Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eddies, Not Sunlight, Spur Annual Bloom of Tiny Plants in North Atlantic

06.07.2012
On a recent expedition to the inhospitable North Atlantic Ocean, scientists at the University of Washington and collaborators studying the annual growth of tiny plants were stumped to discover that the plankton had started growing before the sun had a chance to offer the light they need for their growth spurt.

For decades, scientists have known that springtime brings the longer days and calmer seas that force phytoplankton near the surface, where they get the sunlight they need to flourish.

But in research results published this week in the journal Science, scientists report evidence of another trigger.

Eric D’Asaro and Craig Lee, oceanographers in the UW’s Applied Physics Laboratory and School of Oceanography, are among the researchers who found that whirlpools, or eddies, that swirl across the North Atlantic sustain phytoplankton in the ocean's shallower waters, where the plankton can get plenty of sunlight to fuel their growth even before the longer days of spring start.

The eddies form when heavier, colder water from the north slips under the lighter, warmer water from the south. The researchers found that the eddies cause the bloom to happen around three weeks earlier than it would if it was spurred just by spring’s longer days.

“That timing makes a significant difference if you think about the animals that eat the phytoplankton,” said D’Asaro, the corresponding author on the paper.

Many small sea animals spend the winter dozing in the deep ocean, emerging in the spring and summer to feed on the phytoplankton.

“If they get the timing wrong, they’ll starve,” Lee said. Since fish eat the animals, a reduction in their number could harm the fish population.

Scientists believe that climate change may affect oceanic circulation patterns such as the one that causes the eddies. They’ve found some evidence that warm waters from the subtropics are penetrating further to the north, Lee said.

“If the climate alters the circulation patterns, it might alter the timing of the bloom, which could impact which animals grow and which die out,” he said.

Learning about the circulation of the ocean also helps scientists forecast changes in the ocean, a bit like meteorologists are able to forecast the weather, said D’Asaro.

The scientists didn’t set out to look at the kind of large-scale mixing that they found. In April 2008, Lee and co-author Mary Jane Perry of the University of Maine arrived in a storm-lashed North Atlantic aboard an Icelandic research vessel.

They launched robots (specially designed by Lee and D’Asaro) in the rough seas. A float that hovered below the water's surface followed the motion of the ocean, moving around "like a giant phytoplankton," said D’Asaro.

Lurking alongside the float were 6-foot-long, teardrop-shaped Seagliders, also designed at the UW, that dove to depths of up to 1,000 meters, or 3,280 feet. After each dive, working in areas 20 to 50 kilometers, or 12 to 31 miles, around the float, the gliders rose to the surface, pointed their antennas skyward and transmitted their stored data back to shore via satellite.

The float and gliders measured the temperature, salinity and speed of the water, and gathered information about the chemistry and biology of the bloom itself.

Soon after measurements from the float and gliders started coming in, the scientists saw that the bloom had started, even though conditions still looked winter-like.

"It was apparent that some new mechanism, other than surface warming, was behind the bloom's initiation," said D'Asaro.

To find out what, the researchers needed sophisticated computer modeling.

Enter first author Amala Mahadevan, with Woods Hole Oceanographic Institution, who used 3-D computer models to look at information collected at sea by Perry, D'Asaro and Lee.

She generated eddies in a model using the north-to-south oceanic temperature variation. Without eddies, the bloom happened several weeks later and didn't have the space and time structures actually observed in the North Atlantic.

In the future, the scientists hope to put the North Atlantic bloom into a broader context. They believe much can be learned by following the phytoplankton's evolution across an entire year, especially with gliders and floats outfitted with new sensors. The sensors would look at the tiny animals that graze on the phytoplankton.

“What we're learning about eddies is that they're a critical part of life in the ocean," said Perry. "They shape ocean ecosystems in countless ways."

Grants from the National Science Foundation and NASA funded the research.

This story is adapted from a news release by Cheryl Dybas at the National Science Foundation.

For more information: D’Asaro, 206-685-2982, dasaro@apl.washington.edu or Lee, 206-685-7656, craig@apl.washington.edu.

Watch the authors describe their findings, view photos and read more about this research: http://www.apl.washington.edu/project/project.php?id=north_atlantic_bloom

Hear the authors describe the North Atlantic Bloom in this 2011 seminar series: http://cosee.umaine.edu/programs/webinars/nab/

Cheryl Dybas | Newswise Science News
Further information:
http://www.washington.edu.

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Speed data for the brain’s navigation system

06.12.2016 | Health and Medicine

What happens in the cell nucleus after fertilization

06.12.2016 | Life Sciences

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>