Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Eddies, Not Sunlight, Spur Annual Bloom of Tiny Plants in North Atlantic

06.07.2012
On a recent expedition to the inhospitable North Atlantic Ocean, scientists at the University of Washington and collaborators studying the annual growth of tiny plants were stumped to discover that the plankton had started growing before the sun had a chance to offer the light they need for their growth spurt.

For decades, scientists have known that springtime brings the longer days and calmer seas that force phytoplankton near the surface, where they get the sunlight they need to flourish.

But in research results published this week in the journal Science, scientists report evidence of another trigger.

Eric D’Asaro and Craig Lee, oceanographers in the UW’s Applied Physics Laboratory and School of Oceanography, are among the researchers who found that whirlpools, or eddies, that swirl across the North Atlantic sustain phytoplankton in the ocean's shallower waters, where the plankton can get plenty of sunlight to fuel their growth even before the longer days of spring start.

The eddies form when heavier, colder water from the north slips under the lighter, warmer water from the south. The researchers found that the eddies cause the bloom to happen around three weeks earlier than it would if it was spurred just by spring’s longer days.

“That timing makes a significant difference if you think about the animals that eat the phytoplankton,” said D’Asaro, the corresponding author on the paper.

Many small sea animals spend the winter dozing in the deep ocean, emerging in the spring and summer to feed on the phytoplankton.

“If they get the timing wrong, they’ll starve,” Lee said. Since fish eat the animals, a reduction in their number could harm the fish population.

Scientists believe that climate change may affect oceanic circulation patterns such as the one that causes the eddies. They’ve found some evidence that warm waters from the subtropics are penetrating further to the north, Lee said.

“If the climate alters the circulation patterns, it might alter the timing of the bloom, which could impact which animals grow and which die out,” he said.

Learning about the circulation of the ocean also helps scientists forecast changes in the ocean, a bit like meteorologists are able to forecast the weather, said D’Asaro.

The scientists didn’t set out to look at the kind of large-scale mixing that they found. In April 2008, Lee and co-author Mary Jane Perry of the University of Maine arrived in a storm-lashed North Atlantic aboard an Icelandic research vessel.

They launched robots (specially designed by Lee and D’Asaro) in the rough seas. A float that hovered below the water's surface followed the motion of the ocean, moving around "like a giant phytoplankton," said D’Asaro.

Lurking alongside the float were 6-foot-long, teardrop-shaped Seagliders, also designed at the UW, that dove to depths of up to 1,000 meters, or 3,280 feet. After each dive, working in areas 20 to 50 kilometers, or 12 to 31 miles, around the float, the gliders rose to the surface, pointed their antennas skyward and transmitted their stored data back to shore via satellite.

The float and gliders measured the temperature, salinity and speed of the water, and gathered information about the chemistry and biology of the bloom itself.

Soon after measurements from the float and gliders started coming in, the scientists saw that the bloom had started, even though conditions still looked winter-like.

"It was apparent that some new mechanism, other than surface warming, was behind the bloom's initiation," said D'Asaro.

To find out what, the researchers needed sophisticated computer modeling.

Enter first author Amala Mahadevan, with Woods Hole Oceanographic Institution, who used 3-D computer models to look at information collected at sea by Perry, D'Asaro and Lee.

She generated eddies in a model using the north-to-south oceanic temperature variation. Without eddies, the bloom happened several weeks later and didn't have the space and time structures actually observed in the North Atlantic.

In the future, the scientists hope to put the North Atlantic bloom into a broader context. They believe much can be learned by following the phytoplankton's evolution across an entire year, especially with gliders and floats outfitted with new sensors. The sensors would look at the tiny animals that graze on the phytoplankton.

“What we're learning about eddies is that they're a critical part of life in the ocean," said Perry. "They shape ocean ecosystems in countless ways."

Grants from the National Science Foundation and NASA funded the research.

This story is adapted from a news release by Cheryl Dybas at the National Science Foundation.

For more information: D’Asaro, 206-685-2982, dasaro@apl.washington.edu or Lee, 206-685-7656, craig@apl.washington.edu.

Watch the authors describe their findings, view photos and read more about this research: http://www.apl.washington.edu/project/project.php?id=north_atlantic_bloom

Hear the authors describe the North Atlantic Bloom in this 2011 seminar series: http://cosee.umaine.edu/programs/webinars/nab/

Cheryl Dybas | Newswise Science News
Further information:
http://www.washington.edu.

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Multifunctional Platform for the Delivery of Gene Therapeutics

22.01.2018 | Life Sciences

The world's most powerful acoustic tractor beam could pave the way for levitating humans

22.01.2018 | Power and Electrical Engineering

Siberian scientists learned how to reduce harmful emissions from HPPs

22.01.2018 | Power and Electrical Engineering

VideoLinks