Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ecosystems change long before species are lost

14.08.2013
Rice U. researchers take detailed look at how biodiversity within species impacts communities

Communities in nature are likely to be a lot more sensitive to change than previously thought, according to a new study at Rice University.

The study, which appears this week in Nature Communications, shows that scientists concerned about human influence on the biosphere need to take a deeper look at how altering the dynamics of a population — for example, by removing large members of a species through overfishing — can have measurable consequences, said Rice ecologist Volker Rudolf.

“Natural communities are increasingly altered through human impact, and ecologists have long strived to determine how these changes influence communities,” Rudolf said. He noted the disappearance of a species is the most extreme but not the only cause of biodiversity loss.

“That’s the last thing that happens after you mess up the entire ecosystem for a long period of time,” he said. By then, changes forced upon the structure of a population — such as the ratio of young to old in a species — have already been felt up and down the food chain.

Rudolf suspected species play various roles and their effects on the environment change as they progress through their lifecycles, to the degree that altering these life “stages” within a species could have a significant impact. He and Rice graduate student Nick Rasmussen made a considerable effort to prove it.

For the painstaking experiments that started in 2009, Rudolf, Rasmussen and their colleagues chose dragonflies and water-diving beetles to represent species that have major impact on their respective communities — in this case, fishless ponds — and then created dozens of miniature environments to analyze that impact. Manipulating the presence of different developmental stages within a predator species in each pond helped the researchers determine that such changes did alter the dynamics of complex ecosystems in a measurable way.

“Other than being the largest and most voracious predators in these communities, they’re totally different,” Rudolf said of the apex predators. “We figured if we saw any generalities across these two species, then there’s something to our theory.”

They found that altering which classes of size were present in a population also altered the structure of the entire community and ultimately how the whole ecosystem functioned. Also important, Rudolf said, was that changing the structure of populations sometimes had bigger effects on the ecosystem than changing the predator species.

The results, he said, “challenge classical assumptions and studies that say we can make predictions by assuming that all individuals of a species are the same. You don’t expect a toddler to do the same thing as a grownup, and the same is the case for animals.”

The study could also explain why such human activities as size-selective harvesting can alter the structure of entire food webs in some ocean systems, even when no species had gone extinct and the total biomass of the targeted fish remained the same, he said.

“While these changes would be hard to predict by the classical approach, our results suggests such changes are expected when human activities alter the population structure of keystone species in an ecosystem,” Rudolf said. “Thus, natural ecosystems are likely to be much more fragile then we previously thought.”

Rice University
Office of Public Affairs / News & Media Relations
David Ruth
713-348-6327
david@rice.edu
Mike Williams
713-348-6728
mikewilliams@rice.edu

David Ruth | EurekAlert!
Further information:
http://www.rice.edu
http://news.rice.edu/2013/08/12/ecosystems-change-long-before-species-are-lost/

More articles from Ecology, The Environment and Conservation:

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

nachricht Value from wastewater
16.08.2017 | Hochschule Landshut

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Nagoya physicists resolve long-standing mystery of structure-less transition

21.08.2017 | Materials Sciences

Chronic stress induces fatal organ dysfunctions via a new neural circuit

21.08.2017 | Health and Medicine

Scientists from the MSU studied new liquid-crystalline photochrom

21.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>