Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ecosystems change long before species are lost

14.08.2013
Rice U. researchers take detailed look at how biodiversity within species impacts communities

Communities in nature are likely to be a lot more sensitive to change than previously thought, according to a new study at Rice University.

The study, which appears this week in Nature Communications, shows that scientists concerned about human influence on the biosphere need to take a deeper look at how altering the dynamics of a population — for example, by removing large members of a species through overfishing — can have measurable consequences, said Rice ecologist Volker Rudolf.

“Natural communities are increasingly altered through human impact, and ecologists have long strived to determine how these changes influence communities,” Rudolf said. He noted the disappearance of a species is the most extreme but not the only cause of biodiversity loss.

“That’s the last thing that happens after you mess up the entire ecosystem for a long period of time,” he said. By then, changes forced upon the structure of a population — such as the ratio of young to old in a species — have already been felt up and down the food chain.

Rudolf suspected species play various roles and their effects on the environment change as they progress through their lifecycles, to the degree that altering these life “stages” within a species could have a significant impact. He and Rice graduate student Nick Rasmussen made a considerable effort to prove it.

For the painstaking experiments that started in 2009, Rudolf, Rasmussen and their colleagues chose dragonflies and water-diving beetles to represent species that have major impact on their respective communities — in this case, fishless ponds — and then created dozens of miniature environments to analyze that impact. Manipulating the presence of different developmental stages within a predator species in each pond helped the researchers determine that such changes did alter the dynamics of complex ecosystems in a measurable way.

“Other than being the largest and most voracious predators in these communities, they’re totally different,” Rudolf said of the apex predators. “We figured if we saw any generalities across these two species, then there’s something to our theory.”

They found that altering which classes of size were present in a population also altered the structure of the entire community and ultimately how the whole ecosystem functioned. Also important, Rudolf said, was that changing the structure of populations sometimes had bigger effects on the ecosystem than changing the predator species.

The results, he said, “challenge classical assumptions and studies that say we can make predictions by assuming that all individuals of a species are the same. You don’t expect a toddler to do the same thing as a grownup, and the same is the case for animals.”

The study could also explain why such human activities as size-selective harvesting can alter the structure of entire food webs in some ocean systems, even when no species had gone extinct and the total biomass of the targeted fish remained the same, he said.

“While these changes would be hard to predict by the classical approach, our results suggests such changes are expected when human activities alter the population structure of keystone species in an ecosystem,” Rudolf said. “Thus, natural ecosystems are likely to be much more fragile then we previously thought.”

Rice University
Office of Public Affairs / News & Media Relations
David Ruth
713-348-6327
david@rice.edu
Mike Williams
713-348-6728
mikewilliams@rice.edu

David Ruth | EurekAlert!
Further information:
http://www.rice.edu
http://news.rice.edu/2013/08/12/ecosystems-change-long-before-species-are-lost/

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>