Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The ecology of natural gas

13.07.2012
Scientists examine process chain of natural gas, from rural extraction to urban distribution

"Fracking" stories about shale gas extraction hit the news daily, fueling a growing conflagration between environmental protectionism and economic interests. Otherwise known as hydraulic fracturing, fracking has become a profitable venture thanks to advances in horizontal drilling technology, opening up large US reservoirs and vastly changing the natural gas market.

Touted as a clean energy source and a bridge fuel to transition from fossil fuels, natural gas via fracking is also frought with public health and environmental concerns. A session at the upcoming annual meeting of the Ecological Society of America will look at the natural gas process chain, from extraction and processing to transport and distribution.

In the United States, most shale gas resources lie in the Northeast, South Central and Rocky Mountain regions of the country. Among the largest of these is the Marcellus shale, which underlies a broad swath of the Northeast. Robert Jackson and his colleagues at Duke University have been researching fracking impacts on drinking water, sampling the shallow groundwater systems of more than 200 homeowners, most of them in the Marcellus formation of Pennsylvania and New York. Jackson will be among the presenters discussing the ecological and environmental dimensions of shale gas extraction in the session "Natural Gas: Ecology, Environment and Economics."

"In our first study of 68 homes published in 2011," says Jackson, "we found no evidence of increased salt concentrations or fracturing fluids. But we did find that dissolved methane concentrations were on average 17 times higher for water wells located within 1 kilometer of gas wells."

Jackson's presentation will include additional sampling results taken since the group's May 2011 study.

Shanna Cleveland, with the Conservation Law Foundation, will talk about policy strategies that could encourage cleaner natural gas distribution. Focusing on leaks in the antiquated natural gas pipelines of Massachusetts, Cleveland will draw on data supplied by the state's departments of environmental protection and public utilities.

"In Massachusetts alone," says Cleveland, "leaking pipelines release an estimated 8 – 12 billion cubic feet of methane. Unfortunately, current state and federal policies actually provide disincentives for pipeline owners to find and fix leaks."

Methane, the main constituent of natural gas, can pose a public safety threat and contributes to climate change. Cleveland will talk about how a mechanism called Targeted Infrastructure Recovery Factor (TIRF) could foster repairs by allowing gas companies to recover their capital costs for replacing certain types of pipelines on a yearly basis.

Gas leaks also cause significant changes to the soil. Margaret Hendrick and colleagues at Boston University conducted a study in Boston that looked at the effects of pervasive natural gas leaks from aging pipelines on urban ecosystems. They found that gassed soils often had levels of methane exceeding 90 percent and oxygen levels below 10 percent.

"Soil at leak sites often looks black and viscous, with a crusty substance at its surface," says Hendrick. "Dried out and oxygen-deprived, these soils become inhospitable to many organisms that live in the soil."

The researchers also found that plants at leak sites suffered from higher mortality rates and that methane gas invades plant tissues growing both above and below-ground. Hendrick and her colleagues hope their findings will help city planners and advance understanding of methane's role in global warming.

Robert Howarth, of Cornell University, will summarize the magnitude of methane emissions from all parts of societal use of natural gas as a fuel and compare its greenhouse gas footprint with that of other fossil fuels, such as oil and coal.

"Methane emissions dominate the greenhouse gas footprint of natural gas," says Howarth, who will also discuss the extent to which methane pollution from natural gas can be reduced.

Other speakers in the session are:

Robert Ackley, Gas Safety Inc.
Eric Crosson, Picarro, Inc.
Adrian Down, Duke University
Susan Stout, USDA Forest Service
Lynda Farrell, Pipeline Safety Coalition
Kenneth Klemow, Wilkes University
Organized Oral Session 3 - Natural Gas: Ecology, Environment and Economics will take place on Monday, August 6 from 1:30 PM – 5 PM in room A 105 of the Oregon Convention Center.

The Ecological Society of America is the world's largest community of professional ecologists and the trusted source of ecological knowledge. ESA is committed to advancing the understanding of life on Earth. The 10,000 member Society publishes five journals, convenes an annual scientific conference, and broadly shares ecological information through policy and media outreach and education initiatives. Visit the ESA website at http://www.esa.org or find experts in ecological science at .

Nadine Lymn | EurekAlert!
Further information:
http://www.esa.org

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Northern oceans pumped CO2 into the atmosphere

27.03.2017 | Earth Sciences

Fingerprint' technique spots frog populations at risk from pollution

27.03.2017 | Life Sciences

Big data approach to predict protein structure

27.03.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>