Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ecological Engineering Solves Unsafe Water Problems in Bolivia

31.01.2013
Surrounded by mining, the mountainous region of Potosi, Bolivia is plagued by extensive environmental contamination from past and current mining operations. One mountain alone annually discharges an estimated 161 tons of zinc, 157 tons of iron and more than two tons of arsenic in addition to dozens of other toxic minerals, including cadmium and lead, through its water.

Researchers from the University of Oklahoma have discovered a technique to remove pollutants from water that requires minimal labor costs and is powered by nature itself. After 15 years of testing, research has shown this passive water treatment method to be successful in as diverse geography as the flatlands of Oklahoma and the mountains of Bolivia.

The passive water treatment system is created by engineering an ecosystem consisting of a series of filtering ponds. As the water moves through each specifically designed pond, a natural chemical or biological process removes certain contaminants as it slowly moves from one cell into the other before being re-released into natural waterways.

“When the water reaches the last pond, it has gone from looking like orange, sediment-laden sludge to clear water,” said Robert Nairn, associate director for OU’s Water Technologies for Emerging Regions Center and director of the Center for Restoration of Ecosystems and Watersheds.

The ecological filtering system requires less fossil fuel input and produces less pollution than traditional energy intensive water filtration technologies.

“Since it is powered by the sun, wind and gravity, it requires minimal labor cost and only needs to be checked about once every three months,” said Nairn.

The passive water treatment system captures contaminated water from the mines, which flows through the series of constructed ponds for treatment.

“The region gets less than 17 inches of rain per year,” Nairn said. “Much of the limited water is used for irrigation of staple root crops by the local farmers, resulting in contaminated soils and crops, posing substantial health risks.”

Building upon their experience in the Tar Creek, Okla., Superfund site, the researchers are engineering an ecosystem to treat polluted water in Potosi. The difference between the Tar Creek project and Potosi project is the extreme geographical conditions. Instead of Oklahoma flatlands, the team is working in a desert at 16,000 feet, which poses new challenges.

“Massive water pollution is an issue that affects us all,” Nairn said. “If left untreated, the results are the same: unsafe living conditions and potential health risks. We learn from research in both developed and undeveloped countries to counteract this man-made threat with ecologically friendly solutions.”

This and similar research will be presented at the third International WaTER Conference Sept. 23 through 25 in Norman, Okla. Hosted by OU, the conference brings the world’s leading water experts together to discuss the latest research and efforts to solve water and sanitation challenges for developing countries. Attendees will include international water and sanitation experts from academia, industry, non-governmental organizations, government and foundations. Sanitation development activist Ada Oko-Williams will formally receive the OU International Water Prize and give the plenary lecture. For more information about Nairn and his research on mining watersheds, visit crew.ou.edu. To learn more about the International WaTER Conference, visit water.ou.edu.

Karen Kelly | Newswise
Further information:
http://www.ou.edu

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>