Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earthworms soak up heavy metal

17.08.2012
Bioremediation of toxic metals using worms

Earthworms could be used to extract toxic heavy metals, including cadmium and lead, from solid waste from domestic refuse collection and waste from vegetable and flower markets, according to researchers writing in the International Journal of Environment and Waste Management.

Swati Pattnaik and M. Vikram Reddy of the Department of Ecology and Environmental Sciences, at Pondicherry University, in Puducherry, India, explain how three species of earthworm, Eudrilus eugeniae, Eisenia fetida and Perionyx excavates can be used to assist in the composting of urban waste and to extract heavy metals, cadmium, copper, lead, manganese, zinc, prior to subsequent processing.

With rapid increases in urban populations particularly in the developing world, there is a growing problem of how to manage organic waste and to find alternatives to landfill disposal particularly for domestic food waste and that from vegetable markets. According to the research team, it is an unfortunate fact of life that much of this waste is currently dumped on the outskirts of many towns and cities and is causing serious pollution, disease risk and general ecological harm. It also represents a considerable wasted resource, whereas the organic matter might be exploited usefully in growing food crops.

The process of vermicomposting in this way allows such waste materials to be remediated and the compost used subsequently for use in growing human food without the risk of accumulating heavy metals in crops. The team says that up to about three-quarters of the various heavy metals can be removed by the worms from solid waste. The E. eugeniae species was the most effective worm at remediating solid waste and producing rich compost. The team's tests on vermicomposting reveal that the heavy metal content of such waste can be reduced to levels significantly below the permissible safe limits.

The worms' digestive system is apparently capable of detaching heavy metal ions from the complex aggregates between these ions and humic substances in the waste as it rots. Various enzyme-driven process then seem to lead to assimilation of the metal ions by the worms so that they are locked up in the organism's tissues rather than being released back into the compost as worm casts. The separation of dead worms from compost is a relatively straightforward process allowing the heavy metal to be removed from the organic waste.

Vikram Reddy | EurekAlert!
Further information:
http://www.inderscience.com/

Further reports about: earthworms food crop heavy metals organic waste solid waste waste material

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Dune ecosystem modelling

26.06.2017 | Ecology, The Environment and Conservation

Insights into closed enzymes

26.06.2017 | Life Sciences

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>