Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Using earthquake sensors to track endangered whales

The fin whale is the second-largest animal ever to live on Earth. It is also, paradoxically, one of the least understood. The animal’s huge size and global range make its movements and behavior hard to study.
A carcass that washed up on a Seattle-area beach this spring provided a reminder that sleek fin whales, nicknamed “greyhounds of the sea,” are vulnerable to collision when they strike fast-moving ships. Knowing their swimming behaviors could help vessels avoid the animals. Understanding where and what they eat could also help support the fin whale’s slowly rebounding populations.

University of Washington oceanographers are addressing such questions using a growing number of seafloor seismometers, devices that record vibrations. A series of three papers published this winter in the Journal of the Acoustical Society of America interprets whale calls found in earthquake sensor data, an inexpensive and non-invasive way to monitor the whales. The studies are the first to match whale calls with fine-scale swimming behavior, providing new hints at the animals’ movement and communication patterns.

The research began a decade ago as a project to monitor tremors on the Juan de Fuca Ridge, a seismically active zone more than a mile deep off the Washington coast. That was the first time UW researchers had collected an entire year’s worth of seafloor seismic data.

A seismometer inserted into a hole drilled in seafloor lava. Eight of these instruments were installed at an ocean spreading-center volcano 150 miles off Vancouver Island. A data recording device is enclosed in the yellow sphere. In three years of operation the network detected nearly 40,000 small earthquakes, and hundreds of thousands of fin-whale calls.

“Over the winter months we recorded a lot of earthquakes, but we also had an awful lot of fin-whale calls,” said principal investigator William Wilcock, a UW professor of oceanography. At first the fin whale calls, which at 17 to 35 vibrations per second overlap with the seismic data, “were kind of just a nuisance,” he said.

In 2008 Wilcock got funding from the Office of Naval Research to study the previously discarded whale calls.

Dax Soule, a UW doctoral student in oceanography, compared the calls recorded by eight different seismometers. Previous studies have done this for just two or three animals at a time, but the UW group automated the work to analyze more than 300,000 whale calls.

The method is similar to how a smartphone’s GPS measures a person’s location by comparing paths to different satellites. Researchers looked at the fin whale’s call at the eight seismometers to calculate a position. That technique let them follow the animal’s path through the instrument grid and within 10 miles of its boundaries.

Soule created 154 individual fin whale paths and discovered three categories of vocalizing whales that swam south in winter and early spring of 2003. He also found a category of rogue whales that traveled north in the early fall, moving faster than the other groups while emitting a slightly higher-pitched call.

“One idea is that these are juvenile males that don’t have any reason to head south for the breeding season,” Soule said. “We can’t say for sure because so little is known about fin whales. To give you an idea, people don’t even know how or why they make their sound.”

The fin whale’s call is not melodic, but that’s a plus for this approach. The second-long chirp emitted roughly every 25 seconds is consistently loud and at the lower threshold of human hearing, so within range of earthquake monitoring instruments. These loud, repetitive bleeps are ideally suited for computer analysis.

Michelle Weirathmueller, a UW doctoral student in oceanography, used Soule’s triangulations to determine the loudness of the call. She found the fin whale’s call is surprisingly consistent at 190 decibels, which translates to 130 decibels in air – about as loud as a jet engine.

Knowing the consistent amplitude of the fin whale’s song will help Weirathmueller track whales with more widely spaced seismometer networks, in which a call is recorded by only one instrument at a time. Those include the Neptune Canada project, the U.S. cabled observatory component of the Ocean Observatories Initiative, and the huge 70-seismometer Cascadia Initiative array that’s begun to detect tremors off the Pacific Northwest coast.

“We’d like to know where the fin whales are at any given time and how their presence might be linked to food availability, ocean conditions and seafloor geology,” Weirathmueller said. “This is an incredibly rich dataset that can start to pull together the information we need to link the fin whales with their deep-ocean environments.”

For more information, contact Wilcock at 206-543-6043 or, Soule at 206-543-8542 or and Weirathmueller at 206-543-8542 or Wilcock is traveling on the East Coast until May 15 and best reached by e-mail or at 206-601-1184.

Hannah Hickey | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>