Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Earth's life support systems discussed in an open-access special issue

03.02.2011
Frontiers in Ecology and the Environment issue examines the basic elements of life

In the search for life on Mars or any planet, there is much more than the presence of carbon and oxygen to consider. Using Earth's biogeochemical cycles as a reference point, elements like nitrogen, iron and sulfur are just as important for supporting life. As explored in studies published in February's open-access Special Issue of Frontiers in Ecology and the Environment, the most basic elements work together to support an extraordinary diversity of life.

Cycles of carbon, nitrogen and phosphorous are intertwined and rely on organisms just as much as organisms rely on these elements, explains Edward Rastetter from the Marine Biological Laboratory in Woods Hole, Massachusetts, in one of the issue's articles. For instance, fallen leaves on a forest floor supply food for microbes which excrete nutrients back into the soil, benefitting nearby trees.

Microbes transform raw materials—such as chemicals, gases and sunlight—into biomass by a variety of metabolic processes. These energy-converting processes are as diverse as the microbes that conduct them, and are much more diverse than the metabolic capabilities of plants or animals, according to Amy Burgin from Wright State University in Dayton, Ohio, and colleagues in one of the issue's articles.

Burgin and her team study rock-eating microbes, officially called chemolithotrophic microbes, and their roles in the ecosystems they inhabit. A well-known example habitat is the extreme environment of deep-sea hydrothermal vents, wherein these microbes metabolize dissolved minerals into organic forms of carbon that support complex food webs of tube worms, mussels and clams. These microbes and food webs have adapted to life without photosynthesis.

"While hydrothermal vents are an especially extreme environment where chemolithotrophic organisms play a particularly important and conspicuous role, they are also found in most aquatic environments, often at boundaries along oxygen-depleted zones of sediments or groundwater," says Burgin. "Their metabolic processes provide insight into the life forms that existed before Earth had an oxidized atmosphere. There were biogeochemical cycles, but they were driven by microbes that lived in the absence of oxygen, and these most ancient life forms persist today. Their activity helps drive biogeochemical cycling in today's world too."

In Frontiers' Life Lines column, Adrian Burton ponders a biogeochemical riddle of Mars where nitrogen is a major missing element. However, Mars may have once had much more nitrogen before losing it to space. "The interconnectedness of biogeochemical cycles is essential for life as we know it on Earth and would be for any life on Mars," says Burton. "But did any ancient Martian life that may have arisen get the time it needed to adapt to the Red Planet's changing environmental conditions, including disappearing nitrogen? Wouldn't it be nice to know!"

The Special Issue of Frontiers in Ecology and the Environment on Coupled Biogeochemical Cycles is open access and available at http://www.esajournals.org/toc/fron/9/1. To subscribe to ESA press releases, access all of the Society's journals or reach experts in ecological science, contact Katie Kline, ESA Communications Officer, at katie@esa.org or 202-833-8773 x211.

The Ecological Society of America is the world's largest professional organization of ecologists, representing 10,000 scientists in the United States and around the globe. Since its founding in 1915, ESA has promoted the responsible application of ecological principles to the solution of environmental problems through ESA reports, journals, research, and expert testimony to Congress. ESA publishes four journals and convenes an annual scientific conference. Visit the ESA website at http://www.esa.org or find experts in ecological science at http://www.esa.org/pao/rrt/.

Katie Kline | EurekAlert!
Further information:
http://www.esa.org

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>