Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Earlier snowmelt prompting earlier breeding of Arctic birds


WCS study shows earlier spring seasons brought about by climate change causing long-distance migrants to breed sooner

With earlier springs, Arctic Alaska shorebirds like this red-necked phalarope feeding in a small Arctic pond, need to adjust their migratory calendars to breed earlier and earlier. Such adjustments for these international migrants have unclear effects on their capacity to balance other seasonal demands in other parts of the world.

Credit: Steve Zack

A new collaborative study that included the work of Wildlife Conservation Society (WCS) biologists has revealed that migratory birds that breed in Arctic Alaska are initiating nests earlier in the spring, and that snowmelt occurring earlier in the season is a big reason why.

The report, "Phenological advancement in arctic bird species: relative importance of snow melt and ecological factors," appears in the current on-line edition of the journal Polar Biology. Lead author Joe Liebezeit (formerly with WCS) and co-author Steve Zack of WCS have conducted research on Arctic birds and conservation issues in Alaska for more than a decade.

Liebezeit now works for the Audubon Society of Portland. Other co-authors of the study include Kirsty Gurney of the University of Alaska Fairbanks, and Michael Budde and David Ward of the U.S. Geological Survey, Alaska Science Center.

Researchers looked in nearly 2,500 nests of four shorebird species: semi-palmated sandpiper, red phalarope, red-necked phalarope, and pectoral sandpiper, and one songbird, the lapland longspur, and recorded when the first eggs were laid in each nest. The research occurred across four sites that ranged from the oilfields of Prudhoe Bay to the remote National Petroleum Reserve of western Arctic Alaska.

Snow melt was assessed in nesting plots at different intervals in the early spring. Other variables, like nest predator abundance (which is thought to affect timing of breeding), and satellite measures of "green-up"(the seasonal flush of new growth of vegetation) in the tundra were also assessed as potential drivers of the change in nest timing, but were found to be less important than snow melt.

"It seems clear that the timing of the snow melt in Arctic Alaska is the most important mechanism driving the earlier and earlier breeding dates we observed in the Arctic," said Liebezeit. "The rates of advancement in earlier breeding are higher in Arctic birds than in other temperate bird species, and this accords with the fact that the Arctic climate is changing at twice the rate."

The birds advanced their nesting an average of 4-7 days over the nine years of the study. This pattern agrees with the general observation of 0.5 days per year observed in the scarce few other studies of nest initiation in the Arctic. The rates of change in this pattern are much higher than those observed in studies of temperate birds south of the Arctic.

WCS Coordinator of Bird Conservation Steve Zack said, "Migratory birds are nesting earlier in the changing Arctic, presumably to track the earlier springs and abundance of insect prey. Many of these birds winter in the tropics and might be compromising their complicated calendar of movements to accommodate this change. We're concerned that there will be a threshold where they will no longer be able to track the emergence of these earlier springs, which may impact breeding success or even population viability."

WCS Beringia Program Coordinator Martin Robards said, "Everything is a moving target in the Arctic because of the changing climate. Studies like these are valuable in helping us understand how wildlife is responding to the dramatic changes in the Arctic ecosystem. The Arctic is so dramatically shaped by ice, and it is impressive how these long-distance migrants are breeding in response to the changes in the timing of melting ice."


This study was made possible by generous funding support from the Liz Claiborne and Art Ortenberg Foundation, The Kresge Foundation, U.S. Fish and Wildlife Service, U.S. Geological Survey, and Disney Friends for Change, among others. Logistical support was provided by BP.

Scott Smith | Eurek Alert!

Further reports about: Arctic Conservation WCS Wildlife abundance nests phalarope snowmelt species

More articles from Ecology, The Environment and Conservation:

nachricht Taking a molecular approach to conserving freshwater biodiversity
09.11.2015 | Universiti Putra Malaysia (UPM)

nachricht Faster digestion in kangaroos reduces methane emissions
05.11.2015 | Universität Zürich

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Lactate for Brain Energy

Nerve cells cover their high energy demand with glucose and lactate. Scientists of the University of Zurich now provide new support for this. They show for the first time in the intact mouse brain evidence for an exchange of lactate between different brain cells. With this study they were able to confirm a 20-year old hypothesis.

In comparison to other organs, the human brain has the highest energy requirements. The supply of energy for nerve cells and the particular role of lactic acid...

Im Focus: Laser process simulation available as app for first time

In laser material processing, the simulation of processes has made great strides over the past few years. Today, the software can predict relatively well what will happen on the workpiece. Unfortunately, it is also highly complex and requires a lot of computing time. Thanks to clever simplification, experts from Fraunhofer ILT are now able to offer the first-ever simulation software that calculates processes in real time and also runs on tablet computers and smartphones. The fast software enables users to do without expensive experiments and to find optimum process parameters even more effectively.

Before now, the reliable simulation of laser processes was a job for experts. Armed with sophisticated software packages and after many hours on computer...

Im Focus: Quantum Simulation: A Better Understanding of Magnetism

Heidelberg physicists use ultracold atoms to imitate the behaviour of electrons in a solid

Researchers at Heidelberg University have devised a new way to study the phenomenon of magnetism. Using ultracold atoms at near absolute zero, they prepared a...

Im Focus: Climate Change: Warm water is mixing up life in the Arctic

AWI researchers’ unique 15-year observation series reveals how sensitive marine ecosystems in polar regions are to change

The warming of arctic waters in the wake of climate change is likely to produce radical changes in the marine habitats of the High North. This is indicated by...

Im Focus: Nanocarriers may carry new hope for brain cancer therapy

Berkeley Lab researchers develop nanoparticles that can carry therapeutics across the brain blood barrier

Glioblastoma multiforme, a cancer of the brain also known as "octopus tumors" because of the manner in which the cancer cells extend their tendrils into...

All Focus news of the innovation-report >>>



Event News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

Gluten oder nicht Gluten? Überempfindlichkeit auf Weizen kann unterschiedliche Ursachen haben

17.11.2015 | Event News

Art Collection Deutsche Börse zeigt Ausstellung „Traces of Disorder“

21.10.2015 | Event News

Latest News

Fraunhofer’s Urban Futures Conference: 2 days in the city of the future

25.11.2015 | Event News

NASA's Operation IceBridge completes twin polar campaigns

25.11.2015 | Earth Sciences

NASA plans twin sounding rocket launches over Norway this winter

25.11.2015 | Physics and Astronomy

More VideoLinks >>>