Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Ear bones reveal spawning secrets of Lake Erie walleye

30.07.2010
Ecologists have long believed that fish tend to return to the same river where they hatched in order to spawn. But researchers at Ohio State University have determined that the old rule doesn’t always apply -- not for Lake Erie walleye, at least.
Using a statistical analysis of chemicals found in walleye ear bones, the researchers were able to calculate the percentage of walleye hatched in the Sandusky and Maumee rivers that returned home to spawn, and the percentage that strayed elsewhere.

They discovered that almost all the walleye that spawned in the Maumee were hatched in the Maumee, but only two thirds of the walleye that spawned in the Sandusky were hatched in the Sandusky. Most of the remaining third had hatched in the Maumee.

The findings, which will be presented at the Joint Statistical Meeting in Vancouver, British Columbia on Thursday, August 5, will help wildlife officials determine which rivers may be at risk of overfishing and which may not.

Otoliths, commonly called “ear stones,” are actually inner ear bones that help fish sense their balance and movement in the water. Similar structures perform the same function in the human ear.

“As fish grow, the otoliths grow, too,” said Bethann Mangel Pflugeisen, who just earned her master’s degree in statistics at Ohio State. “Every day, new layers are deposited on the outside of the otolith. Trace elements from the water become embedded in the layers, and ecologists can read these chemical ‘signatures’ to reconstruct the life history of a fish.”

Otoliths contain rings -- similar to tree rings -- that mark the passage of the seasons. Scientists can sample the material between the rings to tell where a fish was living during that particular season.

The walleye is the Ohio state fish, and it is prized by commercial fisheries, recreational anglers, and seafood lovers. It can be found all over the Great Lakes, but those that live in Lake Erie tend to spawn in either the Sandusky or Maumee -- two tributaries some 35 miles apart on the southwest lake shore. Wildlife officials regularly sample the populations to set size and number limits on how many fish can be caught each season.

Walleye appearance varies from Great Lake to Great Lake, but within any one lake, the fish look very similar, regardless of where they hatched. So ecologists have to use other means to identify a fish’s river of origin.

Analyzing otoliths is a technique that has gained acceptance over the last decade. Mangel Pflugeisen used a statistical method that will help ecologists make the most of the limited information they can get.

She explained how her results could apply to fishery management.

“Almost no walleye stray from other sites to spawn at the Maumee,” she said. “So if the Maumee is ever overfished, it is unlikely to recover, since fish won’t be coming in from other sites to replenish the population. However, since so many fish from other sites stray to the Sandusky to spawn, the Sandusky is less vulnerable to overfishing. Officials would have a little more flexibility in the management of that river.”

Her advisor, Catherine Calder, associate professor of statistics, explained the larger significance.

“While this research was motivated by the need to better understand particular Lake Erie walleye populations, the statistical techniques in Bethann's thesis are general enough to be directly applicable in studies of other fish species in different regions of the world,” Calder said.

Mangel Pflugeisen decided to pursue the project after taking an aquatic ecology course from Elizabeth Marschall, associate professor of evolution, ecology, and organismal biology at Ohio State.

Marschall provided Lake Erie walleye data collected by one of her former graduate students, Jennell Bigrigg, who just earned her doctorate in veterinary medicine.

Bigrigg harvested nearly 250 walleye from the Sandusky and Maumee over three spawning seasons during the spring of 2003, 2004, and 2005. She removed a tiny ear bone, known as an otolith, from each fish, and measured the chemical elements contained in it.

Mangel Pflugeisen compared the amounts two key elements, strontium and calcium, at the core of each otolith -- the part of the bone that grew just after the fish hatched.

Bedrock beneath the Sandusky contains more strontium than bedrock beneath the Maumee. Yet both sites contain roughly equal amounts of calcium. So, she reasoned, fish hatched in the Sandusky should have absorbed much more strontium from the water during their early life, and stored much higher concentrations of strontium in their otoliths from that time.

Once she isolated a unique chemical signature for the two rivers, she used a statistical technique known as Bayesian hierarchical mixture modeling to analyze the data. The task was difficult, because the model had to account for the ratio of elements in the otoliths and in the water of both rivers at the same time.

The analysis showed that about 92 percent of the fish that were caught at the Maumee had also hatched in the Maumee, with a very small percentage having originated at the Sandusky.

At the Sandusky, however, only about 66 percent of the fish that were caught were returners -- that is, had been hatched in the Sandusky -- and about 30 percent originated at the Maumee.

The results confirmed what Marschall already suspected: the Maumee fish were straying to the Sandusky to spawn, but not vice versa.

“Dr. Marschall already had strong reason to believe that’s what was happening, so I was not surprised by the results,” Mangel Pflugeisen said. “But it was really neat to be able to back up her strong, ecologically-based sense of what was going on with a statistical analysis that yielded the same general trend, while also giving numerical estimates.”

Contact: Bethann Mangel Pflugeisen, pfloog@gmail.com or
Catherine Calder, (614) 688-0004; calder@stat.osu.edu
Written by Pam Frost Gorder, (614) 292-9475; Gorder.1@osu.edu

Catherine Calder | EurekAlert!
Further information:
http://www.osu.edu
http://researchnews.osu.edu/archive/walleye.htm

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Closing the carbon loop

08.12.2016 | Life Sciences

Applicability of dynamic facilitation theory to binary hard disk systems

08.12.2016 | Physics and Astronomy

Scientists track chemical and structural evolution of catalytic nanoparticles in 3-D

08.12.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>