Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dwindling Wind May Tip Predator-Prey Balance

22.09.2014

Bent and tossed by the wind, a field of soybean plants presents a challenge for an Asian lady beetle on the hunt for aphids. But what if the air — and the soybeans — were still?

Rising temperatures and shifting precipitation patterns may get the lion’s share of our climate change attention, but predators may want to give some thought to wind, according to a University of Wisconsin Madison zoologist’s study, which is among the first to demonstrate the way “global stilling” may alter predator-prey relationships.


Brandon Barton

An asian lady beetle rests on a plant in a soybean field in this time-exposure image. New research suggests that diminishing wind speeds caused by climate change affect the ability of such insects to capture prey.

“There are all sorts of other things that are changing in the environment that affect animals and plants and their interactions,” says Brandon Barton, a UW–Madison postdoctoral researcher. “My students and I were standing out in a cornfield one day as big gusts of wind came by, and the corn stalks were bending almost double. From the perspective of an animal living in the corn, we thought, ‘That’s got to have a big effect.’”

Wind speeds in the Midwest are expected to decline as much as 15 percent during the 21st century. Earth’s poles are warming faster than the equator, robbing the atmosphere of some of the temperature differential that creates wind. And the trend across the American landscape is to put up barriers to the wind in the form of buildings and more natural structures.

“In North America, we’ve been replanting trees that were lost in the 1800s, after settlers showed up and just leveled places like New England,” Barton says.

That’s good news for hungry lady beetles, according to research Barton published in the September issue of the journal Ecology.

Lady beetles eat a major soybean pest, the soybean aphid. Barton grew plots of soybeans in alfalfa fields, protecting some with wind blocks and leaving others in the open.

He found two-thirds more lady beetles in the plots hidden from the wind, and twice as many soybean aphids on the plants growing in the open.

Wind has no direct effect on the aphids, tiny insects that hug the plants and anchor themselves while feeding with a needle-like mouthpart called a stylet.

“The aphids appear on the plants whether it’s windy or not, and we showed that in lab experiments,” Barton says. “But when you add the predators, with the wind block, the beetles eat something like twice as many aphids.”

In his lab trials — simulating wind with fans and windless movement with a machine that tugged on tethered plants to shake and bend them — a stilled soybean plant represented a smorgasbord for the lady beetle.

“How do you do your duty as a predator if you’re entire world is moving around?” says Barton, whose work is funded by the National Science Foundation. “If the plant is moving, it takes four times as long for the predator to start eating, and it eats less than half as many aphids in an hour.”

Slower natural wind speeds could reduce the amount of pesticide required to keep soybean aphids from wrecking harvests. And the wind research may present other opportunities for pest control.

“By growing trees or not harvesting them around a field, you may be able to have an indirect effect on the number of aphids on your soybean plants,” says Barton, who wonders what other close animal relationships may be disrupted by shifting winds.

“The mechanism may be different for other predators, but it’s not hard to start thinking about effects,” he says. “Think of a wolf or coyote. Larger predators hunting by scent — and the prey trying to detect their predators — may be affected by less wind moving scents around.”

Contact Information

Brandon Barton, 608-262-9226, btbarton@wisc.edu

Brandon Barton | newswise

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>