Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dust deposited in oceans may carry elements toxic to marine algae

10.03.2009
Dust blown off the continents and deposited in the open ocean is an important source of nutrients for marine phytoplankton, the tiny algae that are the foundation of the ocean food web. But new findings show that some sources of dust also carry toxic elements that can kill marine phytoplankton.

Researchers discovered the toxic effects during a study of how phytoplankton respond to atmospheric aerosols deposited in the northern Red Sea. The results will be published in the online early edition of the Proceedings of the National Academy of Sciences (PNAS) the week of March 9, 2009.

"This is the first time that toxicity from atmospheric aerosols has been reported for the ocean system," said first author Adina Paytan, an associate researcher in the Insitute of Marine Sciences at the University of California, Santa Cruz.

"Oceanographers have always thought of dust deposition as good for phytoplankton, because it provides nutrients such as nitrogen, phosphorus, and iron. But we know air pollution has negative effects on the terrestrial side, and we need to think about the effects of pollutants that may be deposited in the oceans," she said.

Paytan and her coworkers collected aerosols on filters, incubated the samples with seawater, and observed the responses of phytoplankton. They found that the results depended on the wind direction. Aerosols collected from air masses originating over Europe stimulated phytoplankton growth, whereas aerosols from air originating over Africa, which carried dust from the Sahara Desert, had the opposite effect.

Aerosols from both sources supplied key nutrients such as nitrogen and phosphorus, but the Sahara sources also contained high concentrations of copper. "When we added the Sahara dust, the phytoplankton died within 24 hours," Paytan said. "We found that copper was really high in those samples, so we suspected that copper was causing the toxicity."

In follow-up studies, the researchers tested the effects of different concentrations of copper on a dominant species of phytoplankton in the seawater. The organisms (a type of cyanobacterium called Synechococcus) died at the same copper concentrations found in the aerosols. Other studies compared different species of phytoplankton and found variations in their sensitivity to copper.

"The populations of some organisms crashed, while others breezed right through it. So the effects of copper deposition could change the balance in the ecosystem, allowing less sensitive species to take over," Paytan said.

To investigate the global implications of atmospheric copper deposition, the researchers gathered data from various sources on copper concentrations in aerosols, global distributions of aerosols, and aerosol deposition rates. Using an atmospheric deposition model, they calculated rates of copper deposition in different areas of the oceans. They also estimated the contribution of manmade sources of copper compared to pre-industrial rates of copper deposition.

Their analysis suggests that manmade sources account for about 40 percent of the copper deposited in the oceans from atmospheric aerosols. Although most of the copper deposition comes from natural sources of dust, the manmade sources are likely to increase over time, Paytan said. In addition, she said, there may be other pollutants in atmospheric aerosols that could also have toxic effects on marine phytoplankton.

The modeling study suggested that certain areas--such as the Bay of Bengal and downwind of South and East Asia--are particularly at risk for the effects of copper deposition on ocean ecosystems.

The study has several implications for climate change researchers, Paytan said. The amount of dust blowing off the land may change as a result of changes in terrestrial ecosystems. The effects of the dust on phytoplankton growth can be positive or negative, depending on the balance of nutrients and toxins. And as marine phytoplankton grow and photosynthesize, they draw carbon dioxide out of the atmosphere, reducing the atmospheric concentration of the greenhouse gas.

"There are a lot of questions to follow up on," said Paytan, who has received funding from the National Science Foundation to conduct follow-up studies.

Tim Stephens | EurekAlert!
Further information:
http://www.ucsc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>