Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dryland ecosystems emerge as driver in global carbon cycle

22.05.2014

Dryland ecosystems, which include deserts to dry-shrublands, play a more important role in the global carbon cycle than previously thought. In fact, they have emerged as one of its drivers, says Montana State University faculty member Ben Poulter.

Surprised by the discovery, Poulter and his collaborators explained their findings in Nature. At the same time, they urged global ecologists to include the emerging role of dryland ecosystems in their research. Nature is a weekly international journal that publishes peer-reviewed research in all fields of science and technology.

"Our study found that natural events in Australia were largely responsible for this anomaly," Poulter said. "La Nina-driven rainfall during 2010 and 2011, as well as the 30-year greening up of its deserts and other drylands contributed to significant changes across the globe."

Poulter, who has a dual appointment in MSU's Department of Ecology and the Institute on Ecosystems, came to MSU in January. Before that, he worked in France at the Laboratoire des Sciences du Climat et de l'Envionnement (LSCE) where he contributed to compiling information for the Global Carbon Project's annual global carbon budget assessment.

... more about:
»Carbon »Dryland »LSCE »MSU »Montana »biosphere »dioxide »ecosystems »rainfall

He realized during that process that the world's land carbon sink in 2011 seemed to be absorbing an unusually large amount of carbon, Poulter said. Carbon dioxide moves constantly between land, oceans, vegetation and the atmosphere. When one of those absorbs more carbon dioxide than it releases, it's referred to as a carbon sink.

Poulter and his collaborators investigated the phenomena with a variety of data sets and modeling approaches. They eventually discovered surprising interactions between climate extremes and desert greening that increased in importance over the past 30 years. Further study showed that the dryland systems in the Southern Hemisphere, specifically Australia, had particularly high productivity in response to increased La Nina-phase rainfall.

"What surprised us was that no analogous biosphere response to similar climatic extremes existed in the past 30 years, prompting us to explore whether documented dryland-greening trends were responsible for changes in the carbon cycle dynamics," said Philippe Ciais, co-author and senior scientist at LSCE.

The authors discovered that an increase in the precipitation sensitivity of a range of ecosystems processes occurred between the periods of 1982-1996 and 1997-2011. One of those processes was the greening of desert vegetation. Together those processes led to a four-fold increase in net carbon uptake to precipitation over the past 30 years.

"Novel responses of the biosphere have been predicted to occur following human activities that have caused unprecedented changes in atmospheric carbon dioxide concentrations, climate and land cover," Poulter continued. "Our study provides new evidence that interactions among these human activities are now also impacting dryland biomes. These findings have global implications that should be considered in monitoring networks and earth system models."

The large 2011 land carbon uptake is not expected to lead to long-term increases in ecosystem carbon accumulation, according to the researchers.

"Dryland systems have high rates of carbon turnover compared to other biomes," Ciais said. "We can expect the carbon to be quickly respired or consumed in wildfires, already partly reflected by the high atmospheric carbon dioxide growth rate in 2012."

In Poulter's new role at MSU, he said he will work with colleagues investigating the role of fire and invasive species in dryland systems to further understand the mechanisms for dryland greening and carbon cycle consequences.

Evelyn | Eurek Alert!
Further information:
http://www.montana.edu

Further reports about: Carbon Dryland LSCE MSU Montana biosphere dioxide ecosystems rainfall

More articles from Ecology, The Environment and Conservation:

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>