Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drought and fire in the Amazon lead to sharp increases in forest tree mortality

17.04.2014

Ongoing deforestation and fragmentation of forests in the Amazon help create tinderbox conditions for wildfires in remnant forests, contributing to rapid and widespread forest loss during drought years, according to a team of researchers.

The findings show that forests in the Amazon could reach a "tipping point" when severe droughts coupled with forest fires lead to large-scale loss of trees, making recovery more difficult, said Jennifer Balch, assistant professor of geography, Penn State.


This is a thousand-hectare burn in the southeastern Amazon, that was lit to remove unwanted trees to make way for agriculture, escaped into the adjacent forest.

Credit: J.K. Balch, 2004.

"We documented one of the highest tree mortality rates witnessed in Amazon forests," Balch said. "Over the course of our experiment, 60 percent of the trees died with combined drought and repeated fire. Our results suggest that a perfect firestorm, caused by drought conditions and previous fire disturbance, crossed a threshold in forest resistance."

Balch noted that climate change is expected to warm the air in the Amazon region by several degrees and substantially reduce regional precipitation, making understanding the interactions between droughts and fires even more important. "However, even before any prediction of Amazon climate warming occurs, our study demonstrates that drought and fire are already driving forest dieback," she said.

... more about:
»Administration »Amazon »Earth »NASA »atmosphere »landscape

The eight-year study is the largest and longest-running fire experiment in tropical forests. The team of researchers burned 50-hectare forest plots in the southeastern Amazon, a region prone to the effects of climate change.

The plots were burned every year, every three years or not at all. The timeframe for the study included 2007, a year of severe drought. By comparing the tree deaths for the plots each year, the researchers could assess the effect of drought on fire intensity and tree deaths.

"Drought causes more intense and widespread fires," said lead author Paulo Brando, Instituto de Pesquisa Ambiental da Amazônia, Carnegie Institution for Science and Woods Hole Research Center. "Four times more adult trees were killed by fire during a drought year, which means that there was also more carbon dioxide released to the atmosphere, more tree species loss and a greater likelihood of grasses invading the forest."

The researchers found that fragmented forests are more susceptible to the negative impacts of drought and fire and that drought leads to an increase in fuel such as leaves and branches. The findings are key, in part, because most climate change models have not included the impacts of fires on Amazonian forests.

"Basically, none of the models used to evaluate future Amazon forest health include fire, so most of these predictions grossly underestimate the amount of tree death and overestimate overall forest health," said Michael Coe, Woods Hole Research Center.

Fire as a forest management tool can contribute to an increase in severe fires because the resulting thinner canopy leads to dryer forest conditions. This lack of humidity does not dampen fires but does encourage airflow between fields and forests. Fragmented forests also have more edge space, which is susceptible to both fire and invasive grasses -- another potential fuel.

"These forests are tough and can take a lot, but if drought reaches a certain level, big trees begin to die," said Daniel Nepstad, Earth Innovation Institute, who also co-led the study. "We now know that severe drought also makes fires more intense, creating a second tree mortality threshold."

The researchers conclude in today's (April 14) issue of Proceedings of the National Academy of Science that "efforts to end deforestation in the Amazon must be accompanied by programs and policies that reduce the accidental spread of land management fires into neighboring forests and effectively control forest fires when started."

The results are important because large portions of the Amazon forest already experience droughts and are susceptible to fire -- they are broken into smaller blocks by agriculture and they are close to humans, who are the predominant source of fire in the Amazon. The researchers analyzed NASA satellite data to provide regional context for results from the experimental burns.

"In 2007, fires in Southeast Amazonia burned 10 times more forest than in an average climate year -- an area equivalent to a million soccer fields," said Douglas Morton, NASA.

"These smaller forest fragments have more edges than large blocks of forest, which exposes them to the hotter, dryer conditions in the surrounding landscape and makes them more vulnerable to escaped fires," said co-author Marcia Macedo, Woods Hole Research Center.

By 2011, around 8 percent of Southeast Amazonia's forests were less than 328 feet from an agricultural or pasture clearing. This lattice-like network of degraded forest edges is now extremely susceptible to future fire.

###

The National Science Foundation, Packard Foundation, National Aeronautics and Space Administration, and Max Planck Institute for Biogeochemistry supported this research.

A'ndrea Elyse Messer | Eurek Alert!
Further information:
http://www.psu.edu

Further reports about: Administration Amazon Earth NASA atmosphere landscape

More articles from Ecology, The Environment and Conservation:

nachricht Roadmap for better protection of Borneo’s cats and small carnivores
30.05.2016 | Forschungsverbund Berlin e.V.

nachricht Worldwide Success of Tyrolean Wastewater Treatment Technology
27.05.2016 | Universität Innsbruck

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Worldwide Success of Tyrolean Wastewater Treatment Technology

A biological and energy-efficient process, developed and patented by the University of Innsbruck, converts nitrogen compounds in wastewater treatment facilities into harmless atmospheric nitrogen gas. This innovative technology is now being refined and marketed jointly with the United States’ DC Water and Sewer Authority (DC Water). The largest DEMON®-system in a wastewater treatment plant is currently being built in Washington, DC.

The DEMON®-system was developed and patented by the University of Innsbruck 11 years ago. Today this successful technology has been implemented in about 70...

Im Focus: Computational high-throughput screening finds hard magnets containing less rare earth elements

Permanent magnets are very important for technologies of the future like electromobility and renewable energy, and rare earth elements (REE) are necessary for their manufacture. The Fraunhofer Institute for Mechanics of Materials IWM in Freiburg, Germany, has now succeeded in identifying promising approaches and materials for new permanent magnets through use of an in-house simulation process based on high-throughput screening (HTS). The team was able to improve magnetic properties this way and at the same time replaced REE with elements that are less expensive and readily available. The results were published in the online technical journal “Scientific Reports”.

The starting point for IWM researchers Wolfgang Körner, Georg Krugel, and Christian Elsässer was a neodymium-iron-nitrogen compound based on a type of...

Im Focus: Atomic precision: technologies for the next-but-one generation of microchips

In the Beyond EUV project, the Fraunhofer Institutes for Laser Technology ILT in Aachen and for Applied Optics and Precision Engineering IOF in Jena are developing key technologies for the manufacture of a new generation of microchips using EUV radiation at a wavelength of 6.7 nm. The resulting structures are barely thicker than single atoms, and they make it possible to produce extremely integrated circuits for such items as wearables or mind-controlled prosthetic limbs.

In 1965 Gordon Moore formulated the law that came to be named after him, which states that the complexity of integrated circuits doubles every one to two...

Im Focus: Researchers demonstrate size quantization of Dirac fermions in graphene

Characterization of high-quality material reveals important details relevant to next generation nanoelectronic devices

Quantum mechanics is the field of physics governing the behavior of things on atomic scales, where things work very differently from our everyday world.

Im Focus: Graphene: A quantum of current

When current comes in discrete packages: Viennese scientists unravel the quantum properties of the carbon material graphene

In 2010 the Nobel Prize in physics was awarded for the discovery of the exceptional material graphene, which consists of a single layer of carbon atoms...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking 4.0: International Laser Technology Congress AKL’16 Shows New Ways of Cooperations

24.05.2016 | Event News

Challenges of rural labor markets

20.05.2016 | Event News

International expert meeting “Health Business Connect” in France

19.05.2016 | Event News

 
Latest News

3-D model reveals how invisible waves move materials within aquatic ecosystems

30.05.2016 | Materials Sciences

Spin glass physics with trapped ions

30.05.2016 | Materials Sciences

Optatec 2016: Robust glass optical elements for LED lighting

30.05.2016 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>