Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Drought and fire in the Amazon lead to sharp increases in forest tree mortality

17.04.2014

Ongoing deforestation and fragmentation of forests in the Amazon help create tinderbox conditions for wildfires in remnant forests, contributing to rapid and widespread forest loss during drought years, according to a team of researchers.

The findings show that forests in the Amazon could reach a "tipping point" when severe droughts coupled with forest fires lead to large-scale loss of trees, making recovery more difficult, said Jennifer Balch, assistant professor of geography, Penn State.


This is a thousand-hectare burn in the southeastern Amazon, that was lit to remove unwanted trees to make way for agriculture, escaped into the adjacent forest.

Credit: J.K. Balch, 2004.

"We documented one of the highest tree mortality rates witnessed in Amazon forests," Balch said. "Over the course of our experiment, 60 percent of the trees died with combined drought and repeated fire. Our results suggest that a perfect firestorm, caused by drought conditions and previous fire disturbance, crossed a threshold in forest resistance."

Balch noted that climate change is expected to warm the air in the Amazon region by several degrees and substantially reduce regional precipitation, making understanding the interactions between droughts and fires even more important. "However, even before any prediction of Amazon climate warming occurs, our study demonstrates that drought and fire are already driving forest dieback," she said.

... more about:
»Administration »Amazon »Earth »NASA »atmosphere »landscape

The eight-year study is the largest and longest-running fire experiment in tropical forests. The team of researchers burned 50-hectare forest plots in the southeastern Amazon, a region prone to the effects of climate change.

The plots were burned every year, every three years or not at all. The timeframe for the study included 2007, a year of severe drought. By comparing the tree deaths for the plots each year, the researchers could assess the effect of drought on fire intensity and tree deaths.

"Drought causes more intense and widespread fires," said lead author Paulo Brando, Instituto de Pesquisa Ambiental da Amazônia, Carnegie Institution for Science and Woods Hole Research Center. "Four times more adult trees were killed by fire during a drought year, which means that there was also more carbon dioxide released to the atmosphere, more tree species loss and a greater likelihood of grasses invading the forest."

The researchers found that fragmented forests are more susceptible to the negative impacts of drought and fire and that drought leads to an increase in fuel such as leaves and branches. The findings are key, in part, because most climate change models have not included the impacts of fires on Amazonian forests.

"Basically, none of the models used to evaluate future Amazon forest health include fire, so most of these predictions grossly underestimate the amount of tree death and overestimate overall forest health," said Michael Coe, Woods Hole Research Center.

Fire as a forest management tool can contribute to an increase in severe fires because the resulting thinner canopy leads to dryer forest conditions. This lack of humidity does not dampen fires but does encourage airflow between fields and forests. Fragmented forests also have more edge space, which is susceptible to both fire and invasive grasses -- another potential fuel.

"These forests are tough and can take a lot, but if drought reaches a certain level, big trees begin to die," said Daniel Nepstad, Earth Innovation Institute, who also co-led the study. "We now know that severe drought also makes fires more intense, creating a second tree mortality threshold."

The researchers conclude in today's (April 14) issue of Proceedings of the National Academy of Science that "efforts to end deforestation in the Amazon must be accompanied by programs and policies that reduce the accidental spread of land management fires into neighboring forests and effectively control forest fires when started."

The results are important because large portions of the Amazon forest already experience droughts and are susceptible to fire -- they are broken into smaller blocks by agriculture and they are close to humans, who are the predominant source of fire in the Amazon. The researchers analyzed NASA satellite data to provide regional context for results from the experimental burns.

"In 2007, fires in Southeast Amazonia burned 10 times more forest than in an average climate year -- an area equivalent to a million soccer fields," said Douglas Morton, NASA.

"These smaller forest fragments have more edges than large blocks of forest, which exposes them to the hotter, dryer conditions in the surrounding landscape and makes them more vulnerable to escaped fires," said co-author Marcia Macedo, Woods Hole Research Center.

By 2011, around 8 percent of Southeast Amazonia's forests were less than 328 feet from an agricultural or pasture clearing. This lattice-like network of degraded forest edges is now extremely susceptible to future fire.

###

The National Science Foundation, Packard Foundation, National Aeronautics and Space Administration, and Max Planck Institute for Biogeochemistry supported this research.

A'ndrea Elyse Messer | Eurek Alert!
Further information:
http://www.psu.edu

Further reports about: Administration Amazon Earth NASA atmosphere landscape

More articles from Ecology, The Environment and Conservation:

nachricht How to detect water contamination in situ?
22.09.2016 | Tomsk Polytechnic University (TPU)

nachricht Quantifying the chemical effects of air pollutants on oxidative stress and human health
12.09.2016 | Max-Planck-Institut für Chemie

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>