Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dramatic expansion of dead zones in the oceans

27.01.2009
Unchecked global warming would leave ocean dwellers gasping for breath. Dead zones are low-oxygen areas in the ocean where higher life forms such as fish, crabs and clams are not able to live.

In shallow coastal regions, these zones can be caused by runoff of excess fertilizers from farming. A team of Danish researchers have now shown that unchecked global warming would lead to a dramatic expansion of low-oxygen areas zones in the global ocean by a factor of 10 or more.

Whereas some coastal dead zones could be recovered by control of fertilizer usage, expanded low-oxygen areas caused by global warming will remain for thousands of years to come, adversely affecting fisheries and ocean ecosystems far into the future. The findings are reported in a paper 'Long-term ocean oxygen depletion in response to carbon dioxide emissions from fossil fuels' published on-line in the scientific journal Nature Geoscience.

Professor Gary Shaffer of the Niels Bohr Institute, University of Copenhagen, who is the leader of the research team at the Danish Center for Earth System Science (DCESS), explains that "such expansion would lead to increased frequency and severity of fish and shellfish mortality events, for example off the west coasts of the continents like off Oregon and Chile".

Large extinction events

Together with senior scientists Steffen Olsen oceanographer at Danish Meteorological Institute and Jens Olaf Pepke Pedersen, physicist at National Space Institute, Technical University of Denmark, Professor Shaffer has performed projections with the newly-developed DCESS Earth System Model, projections that extend 100,000 years into the future.

He adds that "if, as in many climate model simulations, the overturning circulation of the ocean would greatly weaken in response to global warming, these oxygen minimum zones would expand much more still and invade the deep ocean." Extreme events of ocean oxygen depletion leading to anoxia are thought to be prime candidates for explaining some of the large extinction events in Earth history including the largest such event at the end of the Permian 250 million years ago.

Series of changes

Furthermore, as suboxic zones expand, essential nutrients are stripped from the ocean by the process of denitrification. This in turn would shift biological production in the lighted surface layers of the ocean toward plankton species that are able to fix free dissolved nitrogen. This would then lead to large, unpredictable changes in ocean ecosystem structure and productivity, on top of other large unpredictable changes to be expected from ocean acidification, the other great oceanic consequence of high atmospheric carbon dioxide concentrations from fossil fuel burning.

Professor Shaffer warns that as a result, "the future of the ocean as a large food reserve would be more uncertain. Reduced fossil fuel emissions are needed over the next few generations to limit ongoing ocean oxygen depletion and acidification and their long-term adverse effects".

Gertie Skaarup | EurekAlert!
Further information:
http://www.nbi.dk
http://www.nature.com/ngeo/journal/vaop/ncurrent/index.html

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Argon is not the 'dope' for metallic hydrogen

24.03.2017 | Materials Sciences

Astronomers find unexpected, dust-obscured star formation in distant galaxy

24.03.2017 | Physics and Astronomy

Gravitational wave kicks monster black hole out of galactic core

24.03.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>