Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Don't move a mussel (or a clam, or a snail)


Small freshwater biofoulers carry a big price tag

Anyone that has spent time at a seaside pier has witnessed the destruction barnacles wreak on boat hulls. But biofouling animals are not limited to marine environments. A new paper published in the journal Frontiers in Ecology and the Environment estimates that the global management of freshwater mussels, clams, and other clinging animals costs $277 million U.S. dollars annually.

Zebra Mussels Clogging a Pipe

This is an example of how biofoulers (in this case zebra mussels) can colonize pipes, obstructing flow.

Credit: Photo by Gemma Grace

Biofoulers are organisms that accumulate underwater on hard surfaces, to the detriment of property and economically important activities, such as shipping, power generation, and water treatment. While plants and algae can act as freshwater biofoulers, the study focused on the impact of animals. Eleven groups known to cause problems were investigated, among them mussels, clams, snails, crustaceans, sponges, and insects.

David Strayer is a freshwater ecologist at the Cary Institute of Ecosystem Studies and one of the paper's authors. "A lot of attention has been given to marine biofouling because it costs a ton of money. Less is known about freshwater impacts. We found most of the economic burden is currently shouldered by utilities. Hydroelectric power plant cooling systems and water treatment intake pipes are particularly vulnerable to damages."

Many freshwater biofoulers are filter-feeders. These animals readily colonize pipes and channel walls, where they collect food from the passing water. Coverage can be extensive. When water treatment intake pipes and filters clog, water flow is obstructed, hastening the corrosion of costly infrastructure. Infestation in hydroelectric power station channels decreases the efficiency of water flow used for power generation.

Management has involved keeping biofoulers out, keeping their numbers low, and killing off infestations. Specialized filters can stop animals from entering facilities that rely on untreated water. To prevent accumulation on hard surfaces, copper alloys, anti-fouling coatings, and ultraviolet light are among the methods used. At water treatment plants and power stations repelling chemicals like chlorine and mechanical cleaning are the most common controls.

Strayer notes, "There are a cornucopia of strategies to combat biofoulers, but most are either costly, or come with the price of polluting water and poisoning non-target organisms."

Given our increasing demand for water and electricity, without action the problem is likely to intensify. First author Daisuke Nakano of Japan's Central Research Institute of Electric Power writes, "Impacts of freshwater biofoulers may soon increase as humans inadvertently move these species around the world, as global demand for freshwater rises, and as human activities favor biofouling species by providing them with suitable habitat."

New water treatment plants and power stations will be susceptible to biofouling. And nutrient pollution and climate change may favor biofoulers. Filter-feeding biofoulers – among the most costly – thrive in the nutrient-rich waters common in developed areas, where they establish on engineered surfaces like concrete walls. Climate warming may increase the range of biofouling animals that are limited by cold temperatures.

In North America, the most troublesome biofoulers include zebra mussels, quagga mussels, Asian clams, and New Zealand mud snails. Strayer notes, "A common theme among these biofoulers is that they are non-native. They are also easily transported on boats and in ballast water. This is a worrisome pattern we are seeing around the world."

Preventing the next global hitchhiker will require vigilance. Strayer stresses that, "Our $277 million dollar estimate is extremely conservative. Right now there is very little research on impacts to freshwater shipping, recreation, and irrigation, or the costs associated with altered freshwater habitat or for biofoulers other than animals. We fully expect the number to rise."

Recommendations include research into understudied freshwater biofoulers, such as sponges and insects, as well as a better understanding of how biofoulers interact with one another, as it is common for multiple species to coexist. Also highlighted is the need for control methods that are both effective and environmentally sensitive, and additional studies on the ecological impacts of biofouler invasions.

When dealing with established biofoulers, improved management is critical. But prevention is the most effective tool. Nakano writes, "At the end of the day, we need education, regulation, and legislation designed to minimize the unintentional global transport of biofouling species."


The Cary Institute of Ecosystem Studies is a private, not-for-profit environmental research and education organization in Millbrook, N.Y. For thirty years, Cary Institute scientists have been investigating the complex interactions that govern the natural world. Their objective findings lead to more effective policy decisions and increased environmental literacy. Focal areas include air and water pollution, climate change, invasive species, and the ecological dimensions of infectious disease.

Lori Quillen | EurekAlert!
Further information:

Further reports about: activities animals clam clams ecological freshwater insects mussel pipes snail species

More articles from Ecology, The Environment and Conservation:

nachricht Blacklists Protect the Rainforest
24.09.2015 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Small Alga – Great Effect
22.09.2015 | Leibniz-Zentrum für Marine Tropenökologie (ZMT)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

Im Focus: Battery Production: Laser Light instead of Oven-Drying and Vacuum Technology

At the exhibition BATTERY + STORAGE as part of WORLD OF ENERGY SOLUTIONS 2015 in Stuttgart, the Fraunhofer Institutes for Laser Technology ILT and for Ceramic Technologies and Systems IKTS will be showing how laser technology can be used to manufacture batteries both cost- and energy-efficiently.

In the truest sense, it’s all about watts at the Dresden-based Fraunhofer Institute for Ceramic Technologies and Systems IKTS and the Aachen-based Fraunhofer...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

07.10.2015 | Life Sciences

Research on clean diesel engine technology: Reduce nitrogen oxide emissions and consumption

07.10.2015 | Machine Engineering

Graphene teams up with two-dimensional crystals for faster data communications

06.10.2015 | Information Technology

More VideoLinks >>>