Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


DNA reveals mating patterns of critically endangered sea turtle

New University of East Anglia research into the mating habits of a critically endangered sea turtle will help conservationists understand more about its mating patterns.

Research published today in Molecular Ecology shows that female hawksbill turtles mate at the beginning of the season and store sperm for up to 75 days to use when laying multiple nests on the beach.

New University of East Anglia research into the mating habits of a critically endangered sea turtle will help conservationists understand more about its mating patterns. The turtle is critically endangered, largely due to the (now banned) international trade in tortoiseshell as a decorative material. Because the turtles live underwater, and often far out to sea, little has been understood about their breeding habits until now. The breakthrough was made by studying DNA samples.

Credit: Karl Phillips (University of East Anglia)

It also reveals that these turtles are mainly monogamous and don't tend to re-mate during the season.

Because the turtles live underwater, and often far out to sea, little has been understood about their breeding habits until now. The breakthrough was made by studying DNA samples taken from turtles on Cousine Island in the Seychelles.

The hawksbill turtle (Eretmochelys imbricata) was listed as critically endangered in 1996 by the International Union for Conservation of Nature (IUCN), largely due to a dramatic reduction in their numbers driven by the international trade in tortoiseshell as a decorative material – an activity which was banned in the same year.

The Seychelles are home to the largest remaining population of hawksbill turtles in the western Indian Ocean. Cousine Island is an important nesting ground for the hawksbill and has a long running turtle monitoring program. It is hoped that the research will help focus conservation efforts in future.

Lead researcher Dr David Richardson, from UEA's school of Biological Sciences, said: "We now know much more about the mating system of this critically endangered species. By looking at DNA samples from female turtles and their offspring, we can identify and count the number of breeding males involved. This would otherwise be impossible from observation alone because they live and mate in the water, often far out to sea.

"We now know that female turtles mate at the beginning of the season - probably before migrating to the nesting beaches. They then store sperm from that mating to use over the next couple of months when laying multiple nests.

"Our research also shows that, unlike in many other species, the females normally mate with just one male, they rarely re-mate within a season and they do not seem to be selecting specific 'better quality' males to mate with.

"Understanding more about when and where they are mating is important because it will help conservationists target areas to focus their efforts on.

"It also lets us calculate how many different males contribute to the next generation of turtles, as well as giving an idea of how many adult males are out there, which we never see because they live out in the ocean.

"Perhaps most importantly, it gives us a measure of how genetically viable the population is - despite all the hunting of this beautiful and enigmatic species over the last 100 years.

"The good news is that each female is pairing up with a different male – which suggests that there are plenty of males out there. This may be why we still see high levels of genetic variation in the population, which is crucial for its long term survival .This endangered species does seem to be doing well in the Seychelles at least."

Lead author Karl Phillips, a PhD student in UEA's school of Biological Sciences, added: "This is an excellent example of how studying DNA can reveal previously unknown aspects of species' life histories."

The research was funded by UEA and the Natural Environment Research Council (NERC) Biomolecular Analysis Facility (NBAF).

'Reconstructing paternal genotypes to infer patterns of sperm storage and sexual selection in the hawksbill turtle' by David S. Richardson, Karl P. Phillips, and Tove H.Jorgensen (all UEA) and Kevin G. Jolliffe, San-Marie Jolliffe and Jock Henwood (Cousine Island) is published by the journal Molecular Ecology on Monday, February 4, 2012.

Lisa Horton | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>