Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

More diseases from air pollution uncovered by improved data material

22.01.2014
At rest, we breathe approx. 12-15 times per minute, and for each inhalation we change approx. one litre of air. Depending on the activity level, this makes up a daily quantity in the order of twenty cubic metres of air that - with its content of pollution in the form of particles and different gases - can make us ill depending on how polluted the air is.

Asthma attacks, wheezing, cardiovascular diseases and lung cancer are some of the more glaring examples of diseases we - in worst case - can get from the domestic air. The list of injuries due to air pollution in Denmark is long.

This appears from a brand new article that professor Ole Hertel from Aarhus University, has written with a number of Danish colleagues at University of Copenhagen, the Danish Cancer Society and Aarhus University.

"So the list of diseases detected in Denmark is long, but it does not mean that we have the world's most polluted air. This is to be found in Asia, Africa and South America. Here, you typically find a yearly mean value of the particle pollution (PM10) of 50-200 micrograms per cubic metres of air, while the content in Copenhagen and other Western European Megacities typically is at a lower level - about 20-50 micrograms per cubic metre. But even in a "moderately polluted" air as we call it in Danish towns and cities, we find many serious injuries which come from the air that we breathe every day," explains Ole Hertel.

Danish studies

In the article "Utilizing Monitoring Data and Spatial Analysis Tools for Exposure Assessment of Atmospheric Pollutants in Denmark", Ole Hertel and his colleagues review the Danish experiences in combining measurements and models. By combining measurements on relatively few but well-chosen places with advanced models for spreading of air pollution, the researchers can calculate the air pollution down to the individual addresses.

Hertel and Co. review a number of Danish studies of the coherence between air pollution and injuries to health. A total of nine short-term studies have been published in Denmark, where researchers have demonstrated respiratory and cardiovascular diseases after episodes with increased air pollution, etc. Similarly, eleven studies demonstrate long-term injuries due to air pollution, e.g. lung cancer, cardiovascular diseases, diabetes and mortality.

Improved information

The scientists' ability to detect a wide range if different types of damages of the Danes' health is due to the fact that Danish researchers represent some of the very best to demonstrate illnesses caused by air pollution on human health. This is obvious when we look at the model for spreading of air pollution, OSPM, which was developed by Danes and is now used in approx. twenty countries. This is also why Ole Hertel was invited to give an overview of the diseases detected to be a consequence of the air pollution in Denmark, first on a major international conference and afterwards in book form:

"We have some very unique health registers in Denmark and that is quite different from other countries. We are able to connect addresses and health registers with air-polluted areas. In Denmark, we have many cohort investigations where the same persons are followed during a long period of time. Here, we can link to other sorts of information and thus separate effects related to e.g. lifestyle from effects related to air pollution. For instance, the Danish Cancer Society makes a study of people's diet and exercise habits in a so-called Diet, Cancer, Health study, and in addition you have the whole birth cohort where the same children have been followed from around the turn of the century until now," explains Ole Hertel.

But not only do we have some of the world's best health registers in Denmark;

"We also have some outstanding good pieces of information on traffic, buildings and infrastructure. This information we have concluded in the so-called

AirGis Model which uses digital road maps and building and road registers to determine the parameters we need for air quality calculations on address level. Therefore, we can come up with conclusions that are more precise than in other countries." Ole Hertel emphasises that there are strong constrains around handling of personal information.

Surprising results

Ole Hertel points out one of the Danish results as particularly notable:

"It came as a surprise to me that the studies showed a connection between air pollution and diabetes. It is rather new information that air pollution can cause diabetes, and we are working on finding a biological explanation for this correlation. This is an example of the fact that our very detailed way of working in Denmark leads to precise results."

It takes fifty litres of air to read this article

Dear reader, if you represent an average reader, you have just spent three minutes and 58 seconds to read this article - probably inclusive of pauses for thoughts (thank you for that!). During this time you have inhaled approx. fifty litres of air through your lungs, depending on your gender and size.

Further information

Professor Ole Hertel, Aarhus University, Department of Environmental Science, tel. +45 8715 8514 oh@dmu.dk

Utilizing Monitoring data and Spatial Analysis Tools for exposure Assessment of Atmospheric Pollutants in Denmark, Hertel, O., etc. 2013. In: Occurrence, fate and Impact of Atmospheric Pollutants on Environmental and Human Health; rapporteur: Mr McConnell, L. etc. AC union areas Symposium Series; American Chemical Society: Washington, DC. DOI: 10.1021 /BK-2013-1149.ch006, p. 95-122.

Ole Hertel | EurekAlert!
Further information:
http://www.dmu.dk

More articles from Ecology, The Environment and Conservation:

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

'On-off switch' brings researchers a step closer to potential HIV vaccine

30.03.2017 | Health and Medicine

Penn studies find promise for innovations in liquid biopsies

30.03.2017 | Health and Medicine

An LED-based device for imaging radiation induced skin damage

30.03.2017 | Medical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>