Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disease-Resistant Oysters Call for Shift in Bay Restoration Strategies

29.06.2011
Development of disease resistance among Chesapeake Bay oysters calls for a shift in oyster-restoration strategies within the Bay and its tributaries. That’s according to a new study by researchers at the Virginia Institute of Marine Science (VIMS).

The study, by professors Ryan Carnegie and Eugene Burreson, is the feature article in the most recent issue of Marine Ecology Progress Series. It is based on 50 years of research into the prevalence of MSX disease among the native eastern oyster Crassostrea virginica.

Carnegie, a Research Assistant Professor in the Shellfish Pathology Lab at VIMS, says “Our results point to substantial reproduction by disease-resistant oysters in the high-salinity areas where the parasite causing MSX thrives. We thus argue that reefs in areas of higher salinity should be the focus of conservation and restoration efforts, not just those in disease-free lower salinity areas.”

A histological image of Haplosporidium nelsoni (MSX). The pink refractory bodies are MSX spores in oyster tissues. Image by Dr. Gene Burreson.MSX is caused by the single-celled parasite Haplosporidium nelsoni. It first appeared in Chesapeake Bay in 1959, combining with overharvesting, declines in water quality, and a second parasitic oyster disease known as Dermo to push the Bay’s oyster population to one percent of historical levels. Both MSX and Dermo favor the saltier waters of the Bay’s main stem, decreasing in prevalence as one moves upriver into the fresher waters of Bay tributaries, which form a safe haven from the parasites and diseases.

Restoration strategies
To date, restoration strategies have rested on the idea of protecting these “low-salinity refugia” as sources of larvae for replenishment of disease-ravaged populations in saltier areas of the Bay. These strategies are based on the high levels of mortality traditionally seen among oyster populations in saltier waters (initially more than 90 per cent), and computer models showing that tidal currents can indeed carry oyster larvae downriver from fresher to saltier areas.

Carnegie says “there’s been a lot of attention given to these up-river, low salinity refugia. They’ve been viewed as the key source reefs that are exporting larvae into the higher salinity waters.” Disease-ravaged reefs in higher salinities have been valued primarily for their fishery, which has sought to harvest doomed oysters before they succumbed.

Carnegie and Burreson’s research, however, paints a different picture. They’ve found clear evidence that oysters in the Bay’s saltier waters are developing resistance to both MSX—the focus of their paper—and Dermo, despite the increasing prevalence in the Bay of the parasites responsible for the two diseases. This is only possible through reproduction by resistant oysters in high-disease areas, thus their call for a focusing of restoration efforts onto these disease-resistant areas and populations.

Carnegie says "We basically need to confront the diseases head-on where they are most active, rather than avoiding them by working in low salinities. It’s in the high-disease areas that resistance is developing most rapidly, so restoration efforts should be focused there."

Recent restoration initiatives in Virginia have included the designation of numerous sanctuary reefs in higher salinities and a rotational harvest scheme in the lower Rappahannock River, but these have been controversial. “Harvesters have viewed such efforts with skepticism,” says Carnegie, “because the protected oysters would likely be lost to diseases. Yet our results suggest that strategies like these that increase the number of resistant oysters are precisely the right approach.”

In fact, Carnegie and Burreson point out that restoration efforts focused on low-salinity refugia may actually be counter productive. Carnegie says “our study makes very clear what happens when oyster larvae from the low-salinity refugia settle in high salinity waters—they are removed quickly by the parasites because they are produced by genetically naïve parent oysters that haven’t been selected for disease resistance.” Genetic mingling of these susceptible oysters with their disease-resistant counterparts may be acting to slow the spread of disease resistance through the Chesapeake Bay oyster population.

"Spring Imports” project
Discovery of disease resistance among the Bay’s oysters is based on research that began at VIMS in 1960 with the “Spring Imports” project. Burreson says this long-term study “clearly shows increased resistance to MSX in response to increased disease pressure.” Carnegie adds “decreased disease in the wild despite favorable conditions for the parasites is a clear sign of increasing resistance among our native oysters due to long-term exposure.”

The pair’s research was supported in part by the A. Marshall Acuff, Sr. Memorial Endowment to the VIMS Foundation, which has supported oyster disease research at VIMS for almost 30 years. Carnegie says, “Our team really appreciates the flexibility Acuff support gives our program—the ability to rapidly respond to emerging questions, pursue new directions, and build the foundation for larger, extramurally funded projects.” Acuff support has played a key role in the renewed commitment to native oyster restoration, and has leveraged federal funds and created jobs for Virginia citizens.

David Malmquist | Newswise Science News
Further information:
http://www.vims.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>