Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Discovery of Algae’s Toxic Hunting Habits Could Help Curb Fish Kills

25.01.2010
A microbe commonly found in the Chesapeake Bay and other waterways emits a poison not just to protect itself but to stun and immobilize the prey it plans to eat, a team of researchers from four universities has discovered. The findings about algae linked to massive fish kills could lead to new ways to slow the growth of these tiny but toxic marine creatures.

The researchers studied the behavior of the algal cell Karlodinium veneficum, known as a dinoflagellate and found in estuaries worldwide. Each year millions of dollars are spent on measures to control dinoflagellates around the globe. This particular species is known to release a substance called karlotoxin, which is extremely damaging to the gills of fish. Karlodinium veneficum has been known to form large algal blooms in the Chesapeake and elsewhere, triggering an immediate harmful impact on aquatic life, including fish kills.

“This new research opens the door to reducing bloom frequency and intensity by reducing the availability of its prey,” said Allen Place of the Institute of Marine and Environmental Technology at the University of Maryland Center for Environmental Science. “As we reduce the nutrient load feeding Karlodinium’s prey and bring back the bay's most prolific filter feeder, the Eastern oyster, we could essentially limit Karlodinium’s ability to bloom.”

Place, in whose laboratory karlotoxin was discovered and characterized, was a co-author of the new study, published this week in the online Early Edition of the Proceedings of the National Academy of Sciences. Other researchers involved in the study came from the University of Minnesota, The Johns Hopkins University and the University of Hawaii.

“This is a major environmental problem, but we didn’t know why these microbes were producing the toxins in the first place,” said Joseph Katz, the William F. Ward Sr. Professor in the Department of Mechanical Engineering at Johns Hopkins and a co-author of the paper. “Some people thought they were just using the toxins to scare away other predators and protect themselves. But with this new research, we’ve provided clear evidence that this species of K. veneficum is using the toxin to stun and capture its prey.”

Historically, scientists have found it difficult to study the behavior of these tiny animals because the single-cell creatures can quickly swim out of a microscope’s shallow field of focus. But in recent years this problem has been solved through the use of digital holographic microscopy, which can capture three-dimensional images of the troublesome microbes. The technique was pioneered by Katz.

In a study published in 2007, Katz, Place and Jian Sheng, who was Katz’s doctoral student, were part of a team that reported the use of digital holographic microscopy to view the swimming behavior of K. veneficum and Pfiesteria piscicida. At the time, it appeared that K. veneficum slowed down into a “stealth mode” in order to ambush its prey while P. piscicida sped up to capture prey.

For the new paper, in which Sheng is lead author, the researchers used the same technique to more closely study the relationship between K. veneficum and its prey, a common, single-celled algal cell called a cryptophyte. They found that K. veneficum microbes release toxins to stun and immobilize their prey prior to ingestion, probably to increase the success rate of their hunt and to promote their growth.

This significantly shifts the understanding about what permits harmful algal blooms to form and grow, the researchers said. Instead of being a self-defense mechanism, the microbes’ production of poison appears to be more closely related to growth through the ingestion of a “pre-packaged” food source, the cryptophyte cell, they concluded.

“In the paper, we have answered why these complicated [toxic] molecules are made in nature in the first place and identify a possible alternative mechanism causing massive bloom,” said Sheng, who is now a faculty member in the University of Minnesota’s Department of Aerospace Engineering and Mechanics.

Other co-authors of the PNAS paper are Edwin Malkiel, an adjunct associate research scientist in the Department of Mechanical Engineering at Johns Hopkins; and Jason E. Adolf, an assistant professor in the University of Hawaii’s Department of Marine Science.

Funding for the research was provided by the National Science Foundation and the National Oceanic and Atmospheric Administration’s Coastal Oceans Program.

The journal article maybe viewed online here:
http://www.pnas.org/content/early/2010/01/14/0912254107.full.pdf+html.
Related links:
Joseph Katz’s Web Page: http://web.jhu.edu/fluid_dynamics/index.html
Johns Hopkins Department of Mechanical Engineering: http://www.me.jhu.edu/
Jian Sheng’s Web Page: http://www.aem.umn.edu/people/faculty/bio/jsheng.shtml
Allen Place’s Web Page: http://www.umbi.umd.edu/comb/faculty-directory/place/

Phil Sneiderman | Newswise Science News
Further information:
http://www.jhu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

'Lipid asymmetry' plays key role in activating immune cells

20.02.2018 | Life Sciences

MRI technique differentiates benign breast lesions from malignancies

20.02.2018 | Medical Engineering

Major discovery in controlling quantum states of single atoms

20.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>