Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discoveries show biological formation of oxygen in soils

21.01.2014
In the 1930s, the ability of green plants to form oxygen through oxidation of water–photosynthesis was discovered.

Since then, no other large-scale biological formation of oxygen has been found, until now. New research results show that down in the dark depths of the soil, a previously unknown biochemical process is under way, in which oxygen is formed and carbon dioxide is reduced to organic material.

“The results show that there is a highly unexpected biochemical process going on in forest-, agricultural- and grassland soils. This is knowledge that should be possible to apply in our continued work on reducing the increase of carbon dioxide in the atmosphere and countering the greenhouse effect,” says Professor Siegfried Fleischer of Halmstad University, who initiated the study “Dark Oxidation of Water in Soils”, which was just recently published in Tellus B: Chemical and Physical Meteorology.

The discovery is a consequence of a research track that, from the beginning, was not in line with current views of the soil ecosystem. Professor Fleischer stumbled across the phenomenon when he studied nitrification, an oxygen-consuming process in the ground. The consumption of oxygen was expected to increase when ammonia was supplied, but analyses in the laboratory rather showed that more oxygen was being produced. When the experiment was repeated, this “anomaly” showed up again and again. This new, unequivocal pattern in the results indicated the need for a new concept. Professor Fleischer took up the challenge.

He made the assumption that the bewildering result could be explained if water, which is present everywhere, contributes to reducing carbon dioxide to organic material down in the dark depths of the soil. The fact that this process takes place without sunlight, as is the case with plants, was however something completely outside current knowledge and accepted views. Professor Fleischer, however, went further, with this as his working hypothesis.

One way of getting nearer the problem was working with isotope-labelled water (H218O), thus revealing if the oxygen formed really did come from water. A few years ago, therefore, Professor Fleischer contacted researchers at the Division of Nuclear Chemistry at Chalmers University, where the right equipment could be found, and later also with a specialist at the energy company Vattenfall. The research group was able to show that the oxygen formed came from water in the soil, and that the water was oxidised biologically.

An international assessment of the scientific research, carried out at Halmstad University in 2013, called the results “potentially ground-breaking”.

Professor Fleischer conducted the five-year project in collaboration with Lovisa Bauhn and Arvid Ödegaard-Jensen of the Division of Nuclear Chemistry at Chalmers University, and Patrik Fors at Vattenfall.

For more information, contact Professor Siegfried Fleischer, tel. 070-655 13 63, 035-16 77 66; e-mail: siegfried.fleischer@hh.se.

Pressofficer Lena Lundén, +46-73 241 74 43, lena.lunden@hh.se

Weitere Informationen:

http://www.tellusb.net/index.php/tellusb/article/view/20490 Link to the report “Dark Oxidation of Water in Soils”

Lena Lundén | idw
Further information:
http://www.tellusb.net/index.php/tellusb/article/view/20490
http://www.vr.se

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>