Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New discoveries show biological formation of oxygen in soils

21.01.2014
In the 1930s, the ability of green plants to form oxygen through oxidation of water–photosynthesis was discovered.

Since then, no other large-scale biological formation of oxygen has been found, until now. New research results show that down in the dark depths of the soil, a previously unknown biochemical process is under way, in which oxygen is formed and carbon dioxide is reduced to organic material.

“The results show that there is a highly unexpected biochemical process going on in forest-, agricultural- and grassland soils. This is knowledge that should be possible to apply in our continued work on reducing the increase of carbon dioxide in the atmosphere and countering the greenhouse effect,” says Professor Siegfried Fleischer of Halmstad University, who initiated the study “Dark Oxidation of Water in Soils”, which was just recently published in Tellus B: Chemical and Physical Meteorology.

The discovery is a consequence of a research track that, from the beginning, was not in line with current views of the soil ecosystem. Professor Fleischer stumbled across the phenomenon when he studied nitrification, an oxygen-consuming process in the ground. The consumption of oxygen was expected to increase when ammonia was supplied, but analyses in the laboratory rather showed that more oxygen was being produced. When the experiment was repeated, this “anomaly” showed up again and again. This new, unequivocal pattern in the results indicated the need for a new concept. Professor Fleischer took up the challenge.

He made the assumption that the bewildering result could be explained if water, which is present everywhere, contributes to reducing carbon dioxide to organic material down in the dark depths of the soil. The fact that this process takes place without sunlight, as is the case with plants, was however something completely outside current knowledge and accepted views. Professor Fleischer, however, went further, with this as his working hypothesis.

One way of getting nearer the problem was working with isotope-labelled water (H218O), thus revealing if the oxygen formed really did come from water. A few years ago, therefore, Professor Fleischer contacted researchers at the Division of Nuclear Chemistry at Chalmers University, where the right equipment could be found, and later also with a specialist at the energy company Vattenfall. The research group was able to show that the oxygen formed came from water in the soil, and that the water was oxidised biologically.

An international assessment of the scientific research, carried out at Halmstad University in 2013, called the results “potentially ground-breaking”.

Professor Fleischer conducted the five-year project in collaboration with Lovisa Bauhn and Arvid Ödegaard-Jensen of the Division of Nuclear Chemistry at Chalmers University, and Patrik Fors at Vattenfall.

For more information, contact Professor Siegfried Fleischer, tel. 070-655 13 63, 035-16 77 66; e-mail: siegfried.fleischer@hh.se.

Pressofficer Lena Lundén, +46-73 241 74 43, lena.lunden@hh.se

Weitere Informationen:

http://www.tellusb.net/index.php/tellusb/article/view/20490 Link to the report “Dark Oxidation of Water in Soils”

Lena Lundén | idw
Further information:
http://www.tellusb.net/index.php/tellusb/article/view/20490
http://www.vr.se

More articles from Ecology, The Environment and Conservation:

nachricht Seabird SOS
01.09.2015 | University of California - Santa Barbara

nachricht Northern bald ibises fit for their journey to Tuscany
21.08.2015 | Veterinärmedizinische Universität Wien

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How wind sculpted Earth's largest dust deposit

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from University of Arizona geoscientists. The study is the first to explain how the steep-fronted plateau formed.

China's Loess Plateau was formed by wind alternately depositing dust or removing dust over the last 2.6 million years, according to a new report from...

Im Focus: An engineered surface unsticks sticky water droplets

The leaves of the lotus flower, and other natural surfaces that repel water and dirt, have been the model for many types of engineered liquid-repelling surfaces. As slippery as these surfaces are, however, tiny water droplets still stick to them. Now, Penn State researchers have developed nano/micro-textured, highly slippery surfaces able to outperform these naturally inspired coatings, particularly when the water is a vapor or tiny droplets.

Enhancing the mobility of liquid droplets on rough surfaces could improve condensation heat transfer for power-plant heat exchangers, create more efficient...

Im Focus: Increasingly severe disturbances weaken world's temperate forests

Longer, more severe, and hotter droughts and a myriad of other threats, including diseases and more extensive and severe wildfires, are threatening to transform some of the world's temperate forests, a new study published in Science has found. Without informed management, some forests could convert to shrublands or grasslands within the coming decades.

"While we have been trying to manage for resilience of 20th century conditions, we realize now that we must prepare for transformations and attempt to ease...

Im Focus: OU astrophysicist and collaborators find supermassive black holes in quasar nearest Earth

A University of Oklahoma astrophysicist and his Chinese collaborator have found two supermassive black holes in Markarian 231, the nearest quasar to Earth, using observations from NASA's Hubble Space Telescope.

The discovery of two supermassive black holes--one larger one and a second, smaller one--are evidence of a binary black hole and suggests that supermassive...

Im Focus: What would a tsunami in the Mediterranean look like?

A team of European researchers have developed a model to simulate the impact of tsunamis generated by earthquakes and applied it to the Eastern Mediterranean. The results show how tsunami waves could hit and inundate coastal areas in southern Italy and Greece. The study is published today (27 August) in Ocean Science, an open access journal of the European Geosciences Union (EGU).

Though not as frequent as in the Pacific and Indian oceans, tsunamis also occur in the Mediterranean, mainly due to earthquakes generated when the African...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Networking conference in Heidelberg for outstanding mathematicians and computer scientists

20.08.2015 | Event News

Scientists meet in Münster for the world’s largest Chitin und Chitosan Conference

20.08.2015 | Event News

Large agribusiness management strategies

19.08.2015 | Event News

 
Latest News

Tracking Down the Causes of Alzheimer’s

03.09.2015 | Studies and Analyses

Tiny Drops of Early Universe 'Perfect' Fluid

02.09.2015 | Physics and Astronomy

Learning from Nature: Genomic database standard alleviates search for novel antibiotics

02.09.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>