Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Disappearance of Coral Reefs, Drastically Altered Marine Food Web on the Horizon

06.08.2013
If current climate trends follow historical precedent, ocean ecosystems will be in state of flux for next 10,000 years, according to Scripps Oceanography researchers

If history’s closest analog is any indication, the look of the oceans will change drastically in the future as the coming greenhouse world alters marine food webs and gives certain species advantages over others.


Coral Gardens: A school of surgeonfish cruise coral reefs near Palmyra Atoll.

Scripps Institution of Oceanography, UC San Diego, paleobiologist Richard Norris and colleagues show that the ancient greenhouse world had few large reefs, a poorly oxygenated ocean, tropical surface waters like a hot tub, and food webs that did not sustain the abundance of large sharks, whales, seabirds, and seals of the modern ocean. Aspects of this greenhouse ocean could reappear in the future if greenhouse gases continue to rise at current accelerating rates.

The researchers base their projections on what is known about the “greenhouse world” of 50 million years ago when levels of greenhouse gases in the atmosphere were much higher than those that have been present during human history. Their review article appears in an Aug. 2 special edition of the journal Science titled “Natural Systems in Changing Climates.”

For the past million years, atmospheric CO2 concentrations have never exceeded 280 parts per million, but industrialization, forest clearing, agriculture, and other human activities have rapidly increased concentrations of CO2 and other gases known to create a “greenhouse” effect that traps heat in the atmosphere. For several days in May 2013, CO2 levels exceeded 400 parts per million for the first time in human history and that milestone could be left well behind in the next decades. At its current pace, Earth could recreate the CO2 content of the atmosphere in the greenhouse world in just 80 years.

In the greenhouse world, fossils indicate that CO2 concentrations reached 800-1,000 parts per million. Tropical ocean temperatures reached 35º C (95º F), and the polar oceans reached 12°C (53°F)—similar to current ocean temperatures offshore San Francisco. There were no polar ice sheets. Scientists have identified a “reef gap” between 42 and 57 million years ago in which complex coral reefs largely disappeared and the seabed was dominated by piles of pebble-like single-celled organisms called foraminifera.

“The ‘rainforests-of-the-sea’ reefs were replaced by the ‘gravel parking lots’ of the greenhouse world,” said Norris.

Changing marine life characteristics: Comparison of present, past, and future ocean ecosystemstates. Click on image for larger view. Image courtesy of Science

The greenhouse world was also marked by differences in the ocean food web with large parts of the tropical and subtropical ocean ecosystems supported by minute picoplankton instead of the larger diatoms typically found in highly productive ecosystems today. Indeed, large marine animals—sharks, tunas, whales, seals, even seabirds—mostly became abundant when algae became large enough to support top predators in the cold oceans of recent geologic times.

“The tiny algae of the greenhouse world were just too small to support big animals,” said Norris. “It’s like trying to keep lions happy on mice instead of antelope; lions can’t get by on only tiny snacks.”

Within the greenhouse world, there were rapid warming events that resemble our projected future. One well-studied event is known as the Paleocene-Eocene Thermal Maximum (PETM) 56 million years ago, which serves as a guide to predicting what may happen under current climate trends.

That event lasted about 200,000 years and warmed the earth by 5-9° C (9-16° F) with massive migrations of animals and plants and shifts in climate zones. Notably, despite the disruption to Earth’s ecosystems, the extinction of species was remarkably light, other than a mass extinction in the rapidly warming deep ocean.

“In many respects the PETM warmed the world more than we project for future climate change, so it should come as some comfort that extinctions were mostly limited to the deep sea,” said Norris. “Unfortunately, the PETM also shows that ecological disruption can last tens of thousands of years.”

Indeed, Norris added that continuing the fossil fuel economy even for decades magnifies the period of climate instability. An abrupt halt to fossil fuel use at current levels would limit the period of future climate instability to less than 1,000 years before climate largely returns to pre-industrial norms. But, if fossil fuel use stays on its current trajectory until the end of this century, then the climate effects begin to resemble those of the PETM, with major ecological changes lasting for 20,000 years or more and a recognizable human “fingerprint” on Earth’s climate lasting for 100,000 years.

Co-authors of the review are Sandra Kirtland-Turner of Scripps Oceanography, Pincelli Hull of Yale University, and Andy Ridgwell of the University of Bristol in the United Kingdom.

Robert Monroe | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>