Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dirty Smoke from Ships Found to Degrade Air Quality in Coastal Cities

19.08.2008
Ah, nothing like breathing clean coastal air, right? Think again.

Chemists at UC San Diego have measured for the first time the impact that dirty smoke from ships cruising at sea and generating electricity in port can have on the air quality of coastal cities.

The scientists report in this week’s early online edition of the journal Proceedings of the National Academy of Sciences that the impact of dirty smoke from ships burning high-sulfur fuel can be substantial, on some days accounting for nearly one-half of the fine, sulfur-rich particulate matter in the air known to be hazardous to human health.

Their results have particular significance for the state of California, which will require, beginning next July, that all tankers, cargo and cruise ships sailing into a California port switch to more expensive, cleaner-burning fuels when they come within 24 miles of the coast. Similar international rules requiring clean-burning ship fuels are set to take effect in 2015.

While those regulations are intended to minimize the potential hazards dirty ship smoke may pose to human health and the environment—which some researchers have estimated may be responsible for as many as 60,000 deaths worldwide and a cost to the U.S. economy of $500 million a year—no one knows the actual impact of ship smoke. The reason is that air quality experts have been unable to quantify the specific contribution of ship smoke to the air pollution of coastal cities—until now.

“This is the first study that shows the contribution of ships to fine particulates in the atmosphere,” said Mark Thiemens, Dean of the Division of Physical Sciences and a professor of chemistry and biochemistry at UCSD who headed the research team. “Ships are really unregulated when it comes to air pollution standards. What we wanted to find out was the contribution of ships to the air pollution in San Diego. And what we found was a surprise, because no one expected that the contribution from ships of solid sulfur-rich particles called primary sulfate would be so high.”

Primary sulfate, or SO4, is produced when ships burn a cheap, sulfur-rich fuel called “bunker oil.” Most of the sulfur emitted by ships burning bunker oil is released as sulfur dioxide, or SO2, a gaseous pollutant which is eventually converted to sulfate in the atmosphere. But although SO4 may be a smaller component in ship emissons, the scientists say, these primary sulfate particulates are particularly harmful to humans, because they are especially fine microscopic particles, less than 1.5 microns or millionth of a meter in size. As a result, they can travel extremely long distances because they stay in the atmosphere for longer periods and, unlike bigger dust grains and particles that are removed by the body when breathed, remain in the lungs.

“The importance of primary sulfate is usually ignored in assessments of the impact of ship emissions on air quality because less than 7 percent of all sulfur emitted by ships is found in primary sulfate particles,” said Gerardo Dominguez, a postdoctoral researcher at UCSD and the first author of the paper. “But our results suggest that this component of ship emissions is important and should not be ignored in the future. Knowing how much sulfate from ships is in the air will also allow us to better understand what happens to the other 93 percent of sulfur emitted by ships.”

Working with Thiemens, Dominguez developed a chemical fingerprinting technique that allowed the scientists to distinguish primary sulfate from ship smoke from the tailpipe emissions of trucks, cars and other sources. This was done using an oxygen-isotope technique developed by Thiemens that allows scientists to determine the signature of sulfate molecules made in the atmosphere. The researchers discovered that primary sulfates from ship engines incorporated molecular oxygen (the type we breathe in to live) and are easily distinguished from primary sulfates from car and truck diesel emissions.

Sampling air at the end of the pier at the UC San Diego’s Scripps Institution of Oceanography in La Jolla, the scientists found that the smoke from ships contributed as much as 44 percent of the sulfate found in fine particulate matter in the atmosphere of coastal California. On the days when the proportion of ship sulfate approached one-half of the fine particulate matter, the scientists determined from wind direction and speed calculations that ships burning high sulfur fuel in the Los Angeles, Long Beach and San Diego ports were a major influence.

“We found that in San Diego, the Port of Los Angeles can be a significant influence on air quality because these fine particulates can travel so far,” said Dominguez.

The researchers said the chemical fingerprinting techniques they developed in their study for ship primary sulfur emissions should assist the California Air Resources Board as well as regulators in other states and countries monitor the impacts of ships off their coasts as new restrictions on bunker oil burning by ships are implemented.

“This will tell us whether California’s new regulation requiring cleaner burning fuel 24 miles off the coast is having the effect it’s intended to have,” said Thiemens. “And because a large part of the world’s population live in major cities with shipping ports—such as New York City, San Francisco, Hong Kong, Houston, and Singapore—and global shipping is expected to increase in the decades to come, this should help policy makers around the world make more informed decisions about improving the health of their citizens.”

Other UCSD researchers involved in the study were chemist Terri Jackson, graduate student Lauren Brothers and undergraduate students Burton Barnett and Bryan Nguyen. The research project was financed by grants from the California Air Resources Board, the Camille and Henry Dreyfus Foundation, and the UC Office of the President.

Comment: Mark Thiemens, 858-534-6882
Media Contact: Kim McDonald, 858-534-7572

Kim McDonald | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Touch Displays WAY-AX and WAY-DX by WayCon

27.06.2017 | Power and Electrical Engineering

Drones that drive

27.06.2017 | Information Technology

Ultra-compact phase modulators based on graphene plasmons

27.06.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>