Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

‘Dirty Blizzard’ in Gulf May Account for Missing Deepwater Horizon Oil

18.03.2013
Oil from the 2010 Deepwater Horizon spill acted as a catalyst for plankton and other surface materials to clump together and fall to the sea floor in a massive sedimentation event that researchers are calling a “dirty blizzard.”

Jeff Chanton, the John Widmer Winchester Professor of Oceanography in the Department of Earth, Ocean and Atmospheric Science at Florida State University, is one of the members of the Deep-C Consortium who presented the dirty blizzard hypothesis at a recent conference in New Orleans that focused on the effects of the oil spill on the Gulf of Mexico ecosystem.

The consortium, which includes researchers from FSU, Eckerd College, the University of South Florida and Georgia Institute of Technology, confirmed the never before observed dirty blizzard hypothesis by using thorium, lead and radiocarbon isotopes in addition to DNA analyses of sediments.

The dirty blizzard phenomenon may explain what happened to some portion of the more than 200 million gallons of spilled oil. Microbes likely processed most of the oil within months of the spill, but government assessments have not accounted for all of the spilled oil.

“Some of the missing oil may have mixed with deep ocean sediments, creating a dirty bathtub effect,” Chanton said. “The sediments then fell to the ocean floor at a rate 10 times the normal deposition rates. It was, in essence, an underwater blizzard.”

The oily sediments deposited on the sea floor could cause significant damage to ecosystems and may affect commercial fisheries in the future, he said.

The dirty blizzard hypothesis explains why layers of water that would normally be cloudy with suspended plankton instead appeared transparent during the spill, except for strings of particles falling to the bottom.

“The oil just sucked everything out of the surface,” Chanton said.

Chanton and his Deep-C colleagues are continuing their research to determine exactly how much of the oil ended up on the sea floor.

The Deep-C (Deep Sea to Coast Connectivity in the Eastern Gulf of Mexico) Consortium is composed of 10 major institutions involved in a long-term, interdisciplinary study of deep sea to coast connectivity in the northeastern Gulf of Mexico. The study is investigating the environmental consequences of the 2010 oil spill on living marine resources and ecosystem health.

The research was made possible in part by the Gulf of Mexico Research Initiative (GoMRI), a 10-year independent research program investigating the effects of the Deepwater Horizon incident. The mission of the GoMRI is to improve society’s ability to understand and mitigate the impacts of hydrocarbon pollution and stressors on the marine environment and public health. The program was established through a $500 million financial commitment from BP. For more information, visit http://gulfresearchinitiative.org/.

CONTACT: Jeff Chanton
(850) 644-7493; jchanton@fsu.edu
Or Jill Elish, University Communications
(850) 644-8345; jelish@fsu.edu

Jeff Chanton | Newswise
Further information:
http://www.fsu.edu

More articles from Ecology, The Environment and Conservation:

nachricht Making Oceans Plastic Free - Project tackles the problem of plastic pollution in the oceans
31.05.2017 | Leibniz-Zentrum für Marine Tropenforschung (ZMT)

nachricht Nitrogen Oxides Emissions: Traffic Dramatically Underestimated as Major Polluter
31.05.2017 | Universität Innsbruck

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

Im Focus: Optoelectronic Inline Measurement – Accurate to the Nanometer

Germany counts high-precision manufacturing processes among its advantages as a location. It’s not just the aerospace and automotive industries that require almost waste-free, high-precision manufacturing to provide an efficient way of testing the shape and orientation tolerances of products. Since current inline measurement technology not yet provides the required accuracy, the Fraunhofer Institute for Laser Technology ILT is collaborating with four renowned industry partners in the INSPIRE project to develop inline sensors with a new accuracy class. Funded by the German Federal Ministry of Education and Research (BMBF), the project is scheduled to run until the end of 2019.

New Manufacturing Technologies for New Products

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

A new technique isolates neuronal activity during memory consolidation

22.06.2017 | Life Sciences

Plant inspiration could lead to flexible electronics

22.06.2017 | Materials Sciences

A rhodium-based catalyst for making organosilicon using less precious metal

22.06.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>