Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Die-offs of band-tailed pigeons connected to newly discovered parasite

03.07.2014

A new pathogen has been discovered by scientists investigating major die-offs of pigeons native to North America, according to studies led by the University of California, Davis, and the California Department of Fish and Wildlife.

Scientists were able to implicate this new parasite, along with the ancient parasite Trichomonas gallinae, in the recent deaths of thousands of Pacific Coast band-tailed pigeons. The die-offs occurred during multiple epidemics in California’s Central Coast and Sierra Nevada mountain ranges. Scientists named the new pathogen Trichomonas stableri.


Researchers at UC Davis and the California Department of Fish and Wildlife have identified trichomonosis as a key factor in winter die-offs and population decline of bandtailed pidgeons, a native migratory game bird. (Dianne Ricky/courtesy photo)

Avian trichomonosis is an emerging and potentially fatal disease that creates severe lesions that can block the esophagus, ultimately preventing the bird from eating or drinking, or the trachea, leading to suffocation. The disease may date back to when dinosaurs roamed the earth, as lesions indicative of trichomonosis were found recently in T-Rex skeletons. The disease may also have contributed to the decline of the passenger pigeon, whose extinction occurred exactly 100 years ago.

Epidemics of the disease can result in the death of thousands of birds in a short amount of time. An outbreak in Carmel Valley killed an estimated 43,000 birds in 2007.

“The same parasite species that killed band-tailed pigeons during the outbreaks were also killing the birds when there weren’t outbreaks,” said lead author Yvette Girard, a postdoctoral scholar with the Wildlife Health Center in the UC Davis School of Veterinary Medicine at the time of the studies. “This indicates there may be other factors at play in the die-offs.”

“We are now investigating what triggers these die-offs, which may be caused by the congregation of infected and vulnerable birds during certain environmental conditions, or even spillover from another nearby species,” said principal investigator Christine Johnson, a professor with the UC Davis Wildlife Health Center.  

Between winter 2011 and spring 2012, there were eight mortality events — defined as more than five dead birds found in the same geographic area during the same time frame. The study said trichomonosis was confirmed in 96 percent of dead, sick or dying birds examined at seven of the mortality events. This disease was also found in:

  • 36 percent of band-tailed pigeons at wildlife rehabilitation centers
  • 11 percent of hunter-killed band-tailed pigeons
  • 4 percent of the birds caught live and released

“What makes this disease more troublesome for band-tailed pigeons is their low reproductive rate — about one chick per year — and also that these events are occurring in the wintertime,” said co-author Krysta Rogers, an environmental scientist with the California Department of Fish and Wildlife. “That means almost all the birds we’re losing during events are adult birds. They’re being killed before they have the ability to reproduce in the spring.”

Mortality events in band-tailed pigeons have been reported in California at least since 1945, but have increased during the last decade, with outbreaks reported in six of the last 10 years.

“Going into the study, we expected to find a single, highly virulent species of Trichomonas in birds sampled at outbreaks,” Girard said. “Having two species killing birds at these large-scale mortality events is surprising.”

Necropsies of the birds were conducted at the California Animal Health and Food Safety Laboratory at UC Davis and the Wildlife Investigations Laboratory at the California Department of Fish and Wildlife.

Both studies were funded by the California Department of Fish and Wildlife and the U.S. Fish and Wildlife Service.

The study naming the new species of parasite is published in the journal International Journal for Parasitology: Parasites and Wildlife. The study that explains how trichomonosis is affecting the band-tailed pigeon is published in the journal Infection, Genetics and Evolution.

About UC Davis

UC Davis is a global community of individuals united to better humanity and our natural world while seeking solutions to some of our most pressing challenges. Located near the California state capital, UC Davis has more than 34,000 students, and the full-time equivalent of 4,100 faculty and other academics and 17,400 staff. The campus has an annual research budget of over $750 million, a comprehensive health system and about two dozen specialized research centers. The university offers interdisciplinary graduate study and 99 undergraduate majors in four colleges and six professional schools.

Additional information:

Media contact(s):

Yvette Girard | Eurek Alert!

Further reports about: Fish Trichomonas Wildlife lesions mortality parasite pigeons species

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>