Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Developing a New Laser to Detect Methane Leaks

University of Adelaide researchers are developing a new type of laser system that will monitor methane, the main component of natural gas, levels across large areas. This will provide a useful tool for monitoring greenhouse gas emissions.

The system has the potential to detect methane leaks from long-distance underground gas pipelines and gas fields, including coal seam gas extraction operations, and to measure methane emissions from animal production.

The researchers, based in the University’s Institute for Photonics and Advanced Sensing, have conducted a preliminary study and are developing the laser system for further testing.

“We hope to accurately measure methane concentrations up to a distance of 5km,” says project leader Dr David Ottaway, Senior Lecturer in the School of Chemistry and Physics.

“This will give us an ability to map methane over an area as large as 25 square kilometres in a very short time. At the moment current technology only allows detection at a single point source as it blows past the detector.”

The system uses laser-based remote sensing technology called DIAL. Laser pulses are emitted with alternate frequencies, one of which is absorbed by the methane. The methane concentration is measured by observing the difference between the amounts of light scattered back to the detector. The laser system will then be swept through a circle to determine the methane concentration over a wide area.

To produce a powerful cost-effective laser system, the researchers are developing an erbium-YAG laser source. These lasers have the advantage of emitting light that cannot be seen by humans and is not hazardous to the human eye ‒ important when the lasers are to be used in the environment and not confined to a regulated laboratory.

“We believe we are the only group working on an erbium-YAG DIAL system and we are very excited about the possibilities that this system could offer for reducing greenhouse gas emissions in a cost-effective manner,” Dr Ottaway says.

“Methane is a very important gas in terms of climate change. It absorbs radiation, which warms the atmosphere, at a rate more than 20 times larger than that of carbon dioxide. This technology has great potential to help reduce our methane emissions from gas pipeline leaks or from coal seam gas operations, and may be important for monitoring agricultural emissions over time.”

Media Contact:
Dr David Ottaway
Senior Lecturer, School of Chemistry and Physics
Institute for Photonics and Advanced Sensing
The University of Adelaide
Mobile: +61 0430 325 099
Robyn Mills
Media Officer
The University of Adelaide
Phone: +61 8 8313 6341
Mobile: +61 410 689 084

Dr David Ottaway | Newswise
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>