Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Detour ahead: Cities, farms reroute animals seeking cooler climes

19.06.2013
In spite of considerable human development, the southeastern United States region could provide some of the Western Hemisphere's more heavily used thoroughfares for mammals, birds and amphibians on their way to cooler environments in a warming world, according to new research led by the University of Washington.

The region is among half a dozen areas that could experience heavier traffic compared with the average species-movement across the Western Hemisphere in response to a warming climate. The estimate in southeastern states, for example, is up to 2.5 times the average amount of movement across North and South America.


Dark purple marks areas where high densities of animals will need to travel but where they will encounter the most cities, agricultural development and other human-caused barriers. Light yellow marks areas with less human-land uses and where animals should consequently have an easier time moving.

Credit: U of Washington

Other areas that could see pronounced animal movements are northeastern North America, including around the Great Lakes and north into Canada; southeastern Brazil, home to both the species-rich Atlantic Forest and major cities such as Sao Paulo with its 11 million residents; and the Amazon Basin.

The basin, stretching across seven South American countries, could have the greatest animal movements, up to 17 times the average across the hemisphere. The high northern latitudes also show pronounced species movements, not because of animals currently found there but because of an expected influx of species.

While previous studies mapped where animals need to move to find climates that suit them, this is the first broad-scale study to also consider how animals might travel when confronted with cities, large agricultural areas and other human related barriers, according to Joshua Lawler, associate professor of environmental and forestry sciences and lead author of a paper appearing June 19 online in Ecology Letters.

The golden mouse, ornate chorus frog and southern cricket frog – three of the species that will likely be on the move in southeastern U.S. – were among the nearly 3,000 mammals, birds and amphibians the scientists included in their study, nearly half of all such animals in the Western Hemisphere.

"We took into account that many animals aren't just going to be able to head directly to areas with climates that suit them," Lawler said. "Some animals, particularly small mammals and amphibians, are going to have to avoid highways, agricultural development and the like. We also took into consideration major natural barriers such as the Great Lakes in North America and the Amazon River in South America."

Identifying where large numbers of species will need to move can help guide land use and conservation planning. Many of the animals moving southward through central Argentina will be funneled by agriculture and development through the more intact parts of the Gran Chaco region and into the Sierras de Córdoba and the Andes mountains. Similarly, the southern Appalachian Mountains in the southeastern U.S. are projected to act as a conduit for species moving northward in response to climate change.

"These findings highlight the importance of the natural corridors that exist in these places – corridors that likely warrant more concerted conservation efforts to help species move in response to climate change," Lawler said.
In other places barriers may need to be breached for animals to disperse successfully.

"Southeastern Brazil, for instance, has lots of species that need to move but is a heavily converted landscape. In such places conservation efforts may be needed to reconnect native habitats," Lawler said.

Except for one or two very localized studies, this is the first to project species movements based on both climate change and the constraints of human alterations to the landscape. For the climate component, the researchers took 10 projections of future climate, projected species movements for all 10, then averaged the results. For the human impacts component, the scientists added cities, agriculture and other landscape barriers to 30-mile-square (50-kilometer-square) cells across the Western Hemisphere.

They applied a technique developed by paper co-author Brad McRae of the Nature Conservancy that's based on how electricity finds the path of least resistance when traveling across circuit boards. In this case, however, the "current" was the various species trying to stream through each cell, and the resistance was the human-made and natural landscape barriers.

The work was supported by the U.S. Environmental Protection Agency and the Wilburforce Foundation. The other co-authors are Aaron Ruesch, who earned his master's from the UW and is now with the Wisconsin Department of Natural Resources, and Julian Olden, a UW associate professor of aquatic and fishery sciences.

"The mountainous region from Yellowstone to the Yukon is widely recognized as an important wildlife movement corridor, now our study maps additional pathways across the Western Hemisphere with the potential to shepherd species to safety in a warming future," Olden said. "Climate change and human land use can interact in complex and region-specific ways to shape the ability of species to persist into the future. This suggests that urban and agriculture lands represent both a conservation challenge and opportunity to help species respond to climate-induced changes in temperature."

For more information:
Lawler, jlawler@uw.edu
Olden, olden@uw.edu

Sandra Hines | EurekAlert!
Further information:
http://www.uw.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>