Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Destruction of rainforest not only problem: Change of strategy is needed to save Sumatran orangutan

The orangutans in Sumatra are in danger of becoming extinct. Anthropologists from the University of Zurich now prove that only recently this ape species saw a drastic decrease in population. For the first time, they studied the genetic make-up and migratory behavior of these animals.
Their discoveries: The population is divided into several sub-populations which do not stem from the destruction of the rainforest, but are of a geographic origin. While this population structure does not help preserve the species, there is some good news: Young male orangutans overcome its disadvantages with long journeys – which leads to the discovery of a strategy that could save these endangered apes.

Orangutans are the only large apes in Asia and mainly live in trees. Today, the population only includes two species: While the Borneo orangutan populates large sections of the Southeast Asian island of Borneo, nowadays the Sumatran orangutan is only found at the northern tip of the island of Sumatra. With a current population of only around 6,600 Sumatra orangutans, a figure which is dropping rapidly and constantly, this species is on the Red List of Threatened Species.

Male orangutan in Sumatra's wild

Picture: Ellen Meulmann, Anthropological Institute and Museum, University of Zurich

When large areas of rainforest were cleared in Sumatra to make way for palm-oil plantations, once vast forestlands were reduced to a fraction of their former size and areas of forest that used to be conjoined became isolated from each other. Today, only a few dozen orangutans live in many of these forest areas – and they could be critically endangered for the longer term: After all, geographic isolation can lead to genetic depletion and inbreeding, both of which increase the risk of these small local populations dying out.

The study conducted by the anthropologists from the University of Zurich, which is to be published in the Journal of Heredity, affords the first insights into the genetic structure that are useful for the protection of the species and optimistic in this respect. The orangutan population in Sumatra is divided into several subpopulations that are not the result of industrial deforestation, but rather of a natural origin. The population structure was created and preserved over millennia through natural obstacles such as rivers and mountain ranges.

Young male orangutans travel far – and ensure the survival of their species

For the species to survive, it is essential for a genetic exchange to take place between the genetically differentiated subpopulations. Consequently, the authors of the study discovered several orangutans that were born in the region they were found in but whose fathers exhibited a characteristic genetic profile from a different part of the island – a clear indication that young male orangutans cover large distances to settle far away from the place where they were born. “By doing so, they are killing two birds with one stone,” deduces Alexander Nater, first author of the study. “On the one hand, they avoid the conflict with the dominant local males and thus increase their chances of breeding successfully; at the same time, however, they also reduce the risk of mating with closely related females from their place of birth.”

The distinct dominance structure of male Sumatran orangutans thus constitutes a natural mechanism that guarantees the genetic exchange between the various regions of the island over long distances. As Sumatra’s interior is forested up to high altitudes, the young male orangutans can negotiate mountain ranges and bypass large rivers in the source region. Thanks to their marked wanderlust, they also considerably reduce possible negative consequences of the habitat fragmentation caused by industrial deforestation. And this ultimately offers a glimmer of hope for the survival of this critically endangered ape species.

Genetic diversity points to large population

As another result, the authors were able to demonstrate that a dramatic decline in the orangutan population only took place very recently: “The animals from one of the areas studied on the west coast display a very high degree of genetic diversity,” explains Nater. “This is a clear indicator for a historically large population. As only around 400 orangutans currently live in the area, however, one can only assume that the population plummeted recently.”

In order to obtain the genetic information, the authors analyzed dung and hair samples from wild orangutans, which were collected all over the current distribution area in Sumatra. In order to cover the regions that are difficult to access and have extremely low numbers of the timid apes, they also worked with blood sample of animals that had been kept illegally as pets and confiscated later by the authorities.
Species conservation requires change in strategy

For the orangutans to actually be protected, a change in strategy is required in terms of species conservation: Whereas species protection campaigns in the past have primarily focused on the peat bog forests on the northwest coast of Sumatra, where both orangutans live in a high concentration and there is a sizeable interest in economic use, the new findings suggest specifically protecting the rainforest areas that play a key role in the genetic exchange on the island. With the new results, the focus should especially shift towards the less economically interesting, mountainous inland regions in northern Sumatra: “While these mountain forests are not home to any viable orangutan populations, their value for the protection of the species should by no means be underestimated as the roaming orangutan males traverse these habitats on the lookout for the next population and thus preserve the genetic diversity. These mountain regions should therefore take on a key role in the strategy to protect the Sumatran orangutans,” concludes anthropologist and co-author of the study Carel van Schaik


Alexander Nater, Natasha Arora, Maja P. Greminger, Carel P. van Schaik, Ian Singleton, Serge A. Wich, Gabriella Fredriksson, Dyah Perwitasari-Farajallah, Joko Pamungkas, and Michael Krützen. Marked population structure and recent migration in the critically endangered Sumatran orangutan (Pongo abelii). Journal of Heredity. October 16, 2012. doi: 10.1093/jhered/ess065.


Dr. Alexander Nater
Institute of Evolutionary Biology and Environmental Sciences
University of Zurich
Tel.: +41 44 635 49 11

Professor Carel van Schaik
Anthropological Institute and Museum
University of Zurich
Tel.: +41 44 635 54 10

Beat Müller | Universität Zürich
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Greater Range and Longer Lifetime

26.10.2016 | Power and Electrical Engineering

VDI presents International Bionic Award of the Schauenburg Foundation

26.10.2016 | Awards Funding

3-D-printed magnets

26.10.2016 | Power and Electrical Engineering

More VideoLinks >>>