Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Destroyed Coastal Habitats Produce Significant Greenhouse Gas

07.09.2012
Destruction of coastal habitats may release as much as 1 billion tons of carbon into the atmosphere each year, 10 times higher than previously reported, according to a new Duke led study.

Published online this week in PLOS ONE, the analysis provides the most comprehensive estimate of global carbon emissions from the loss of these coastal habitats to date: 0.15 to 1.2 billion tons. It suggests there is a high value associated with keeping these coastal-marine ecosystems intact as the release of their stored carbon costs roughly $6-$42 billion annually.

"On the high end of our estimates, emissions are almost as much as the carbon dioxide emissions produced by the world's fifth-largest emitter, Japan," said Brian Murray, director for economic analysis at Duke's Nicholas Institute for Environmental Policy Solutions. "This means we have previously ignored a source of greenhouse gas emissions that could rival the emissions of many developed nations."

This carbon, captured through biological processes and stored in the sediment below mangroves, sea grasses and salt marshes, is called "blue carbon." When these wetlands are drained and destroyed, the sediment layers below begin to oxidize. Once this soil, which can be many feet deep, is exposed to air or ocean water it releases carbon dioxide over days or years.

"There's so little data out there on how much carbon might be released when these ecosystems are disturbed," said Oregon State University's Daniel Donato, co-lead author of the paper. "With this analysis we tried to reduce some of that uncertainty by identifying some 'bookends' that represent the lowest and highest probable emissions, given the information available."

The PLOS ONE study looked at the potentially massive amount of carbon tucked away from the atmosphere by the slow accretion, over hundreds to thousands of years, of soils beneath these habitats. Previous work in the area has focused only on the amount of carbon stored in these systems and not what happens when these systems are degraded or destroyed and the stored carbon is released.

"These coastal ecosystems are a tiny ribbon of land, only 6 percent of the land area covered by tropical forest, but the emissions from their destruction are nearly one-fifth of those attributed to deforestation worldwide," said Linwood Pendleton, the study's co-lead author and director of the Ocean and Coastal Policy Program at the Nicholas Institute. "One hectare, or roughly two acres of coastal marsh, can contain the same amount of carbon as 488 cars produce in a year. Comparatively, destroying a hectare of mangroves could produce as much greenhouse gas emissions as cutting down three to five hectares of tropical forest."

The critical role of these ecosystems for carbon sequestration has been overlooked, the study said. These coastal habitats could be protected and climate change combated if a system—much like what is being done to protect trees through Reducing Emissions from Deforestation and Forest Degradation (REDD)—were implemented. Such a policy would assign credits to carbon stored in these habitats and provide economic incentive if they are left intact.

"Blue carbon ecosystems provide a plethora of benefits to humans: they support fisheries, buffer coasts from floods and storms, and filter coastal waters from pollutants," said Emily Pidgeon, senior director of Strategic Marine Initiatives at Conservation International and co-chair of the Blue Carbon Initiative. "Economic incentives to reverse these losses may help preserve these benefits and serve as a viable part of global efforts to reduce greenhouse gases and address climate change."

The work was funded by Linden Trust for Conservation and Roger and Victoria Sant. To review the paper, "Estimating Global ‘Blue Carbon' Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems," visit http://dx.plos.org/10.1371/journal.pone.0043542.

The study was led by Linwood Pendleton of Duke's Nicholas Institute for Environmental Policy Solutions and Dan Donato of Oregon State University. Others from Duke's Nicholas Institute, Conservation International, ESA Phillip Williams & Associates, U.S. Environmental Protection Agency, School of Public and Environmental Affairs, Florida International University, Oregon State University, Mediterranean Institute for Advanced Studies, Smithsonian Environmental Research Center, International Union for Conservation of Nature and the Ocean Conservancy contributed as co-authors.

Photos Available: https://ci.tandemvault.com/lightboxes/NOOc1oIlQ?tc=BaDJzVXqK.

CITATION: "Estimating Global ‘Blue Carbon' Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems," Linwood Pendleton, Daniel C. Donato, Brian C. Murray, Stephen Crooks, W. Aaron Jenkins, Samantha Sifleet, Christopher Craft, James W. Fourqurean, J. Boone Kauffman, Nuria Marba, Patrick Megonigal, Emily Pidgeon, Dorothee Herr, David Gordon, Alexis Baldera. PLOS ONE, Sept. 4, 2012. DOI: 10.1371/journal.pone.0043542.

Note to broadcast editors: Duke provides an on-campus satellite uplink facility for live or pre-recorded television interviews. We are also equipped with ISDN connectivity for radio interviews. Broadcast reporters should contact Scott Wells at (919) 660-1741 or James Todd (919) 681-8061 to arrange an interview.

Erin McKenzie | EurekAlert!
Further information:
http://www.duke.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>