Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Destroyed Coastal Habitats Produce Significant Greenhouse Gas

07.09.2012
Destruction of coastal habitats may release as much as 1 billion tons of carbon into the atmosphere each year, 10 times higher than previously reported, according to a new Duke led study.

Published online this week in PLOS ONE, the analysis provides the most comprehensive estimate of global carbon emissions from the loss of these coastal habitats to date: 0.15 to 1.2 billion tons. It suggests there is a high value associated with keeping these coastal-marine ecosystems intact as the release of their stored carbon costs roughly $6-$42 billion annually.

"On the high end of our estimates, emissions are almost as much as the carbon dioxide emissions produced by the world's fifth-largest emitter, Japan," said Brian Murray, director for economic analysis at Duke's Nicholas Institute for Environmental Policy Solutions. "This means we have previously ignored a source of greenhouse gas emissions that could rival the emissions of many developed nations."

This carbon, captured through biological processes and stored in the sediment below mangroves, sea grasses and salt marshes, is called "blue carbon." When these wetlands are drained and destroyed, the sediment layers below begin to oxidize. Once this soil, which can be many feet deep, is exposed to air or ocean water it releases carbon dioxide over days or years.

"There's so little data out there on how much carbon might be released when these ecosystems are disturbed," said Oregon State University's Daniel Donato, co-lead author of the paper. "With this analysis we tried to reduce some of that uncertainty by identifying some 'bookends' that represent the lowest and highest probable emissions, given the information available."

The PLOS ONE study looked at the potentially massive amount of carbon tucked away from the atmosphere by the slow accretion, over hundreds to thousands of years, of soils beneath these habitats. Previous work in the area has focused only on the amount of carbon stored in these systems and not what happens when these systems are degraded or destroyed and the stored carbon is released.

"These coastal ecosystems are a tiny ribbon of land, only 6 percent of the land area covered by tropical forest, but the emissions from their destruction are nearly one-fifth of those attributed to deforestation worldwide," said Linwood Pendleton, the study's co-lead author and director of the Ocean and Coastal Policy Program at the Nicholas Institute. "One hectare, or roughly two acres of coastal marsh, can contain the same amount of carbon as 488 cars produce in a year. Comparatively, destroying a hectare of mangroves could produce as much greenhouse gas emissions as cutting down three to five hectares of tropical forest."

The critical role of these ecosystems for carbon sequestration has been overlooked, the study said. These coastal habitats could be protected and climate change combated if a system—much like what is being done to protect trees through Reducing Emissions from Deforestation and Forest Degradation (REDD)—were implemented. Such a policy would assign credits to carbon stored in these habitats and provide economic incentive if they are left intact.

"Blue carbon ecosystems provide a plethora of benefits to humans: they support fisheries, buffer coasts from floods and storms, and filter coastal waters from pollutants," said Emily Pidgeon, senior director of Strategic Marine Initiatives at Conservation International and co-chair of the Blue Carbon Initiative. "Economic incentives to reverse these losses may help preserve these benefits and serve as a viable part of global efforts to reduce greenhouse gases and address climate change."

The work was funded by Linden Trust for Conservation and Roger and Victoria Sant. To review the paper, "Estimating Global ‘Blue Carbon' Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems," visit http://dx.plos.org/10.1371/journal.pone.0043542.

The study was led by Linwood Pendleton of Duke's Nicholas Institute for Environmental Policy Solutions and Dan Donato of Oregon State University. Others from Duke's Nicholas Institute, Conservation International, ESA Phillip Williams & Associates, U.S. Environmental Protection Agency, School of Public and Environmental Affairs, Florida International University, Oregon State University, Mediterranean Institute for Advanced Studies, Smithsonian Environmental Research Center, International Union for Conservation of Nature and the Ocean Conservancy contributed as co-authors.

Photos Available: https://ci.tandemvault.com/lightboxes/NOOc1oIlQ?tc=BaDJzVXqK.

CITATION: "Estimating Global ‘Blue Carbon' Emissions from Conversion and Degradation of Vegetated Coastal Ecosystems," Linwood Pendleton, Daniel C. Donato, Brian C. Murray, Stephen Crooks, W. Aaron Jenkins, Samantha Sifleet, Christopher Craft, James W. Fourqurean, J. Boone Kauffman, Nuria Marba, Patrick Megonigal, Emily Pidgeon, Dorothee Herr, David Gordon, Alexis Baldera. PLOS ONE, Sept. 4, 2012. DOI: 10.1371/journal.pone.0043542.

Note to broadcast editors: Duke provides an on-campus satellite uplink facility for live or pre-recorded television interviews. We are also equipped with ISDN connectivity for radio interviews. Broadcast reporters should contact Scott Wells at (919) 660-1741 or James Todd (919) 681-8061 to arrange an interview.

Erin McKenzie | EurekAlert!
Further information:
http://www.duke.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Scientist invents way to trigger artificial photosynthesis to clean air

26.04.2017 | Materials Sciences

Ammonium nitrogen input increases the synthesis of anticarcinogenic compounds in broccoli

26.04.2017 | Agricultural and Forestry Science

SwRI-led team discovers lull in Mars' giant impact history

26.04.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>