Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deepest-living fishes caught on camera for the first time

08.10.2008
Scientists filming in one of the world’s deepest ocean trenches have found groups of highly sociable snailfish swarming over their bait, nearly five miles (7700 metres) beneath the surface of the Pacific Ocean. This is the first time cameras have been sent to this depth.

‘We got some absolutely amazing footage from 7700 metres. More fish than we or anyone in the world would ever have thought possible at these depths,’ says project leader Dr Alan Jamieson of the University of Aberdeen’s Oceanlab, on board the Japanese research ship the Hakuho-Maru.

‘It’s incredible. These videos vastly exceed all our expectations from this research. We thought the deepest fishes would be motionless, solitary, fragile individuals eking out an existence in a food-sparse environment,’ says Professor Monty Priede, director of Oceanlab.

‘But these fish aren’t loners. The images show groups that are sociable and active – possibly even families – feeding on little shrimp, yet living in one of the most extreme environments on Earth.’

‘All we’ve seen before of life at this depth have been shrivelled specimens in museums. Now we have an impression of how they move and what they do. Having seen them moving so fast, snailfish seems a complete misnomer,’ he added.

Although some species of snailfish live in shallow water and even rock pools, the hadal snailfish are found exclusively below 6000 metres. Here they have to contend with total darkness, near freezing temperatures and immense water pressure – at this depth the pressure is 8,000 tonnes per square metre, equivalent to that of 1600 elephants standing on the roof of a Mini car. They feed on the thousands of tiny shrimp-like creatures that scavenge the carcasses of dead fish and detritus reaching the ocean floor.

Hadal snailfish live only in trenches around the Pacific Ocean, with different species confined to each region: the Chile and Peru trenches off South America, the Kermadec and Tonga trenches situated between Samoa and New Zealand in the South Pacific, and trenches of the North-West Pacific including the Japan trench, which Priede’s team is currently investigating.

The work is part of Oceanlab’s HADEEP project – a collaborative research programme with the University of Tokyo – devised by Priede to investigate life in the hadal region of the ocean, which is anything below 6000 metres down. The expedition, funded by the Natural Environment Research Council and the Nippon Foundation in Japan, started on 24 September and ended yesterday, 6 October.

The deep-sea equipment needed to survive the extreme pressure at these depths was designed and built by the Oceanlab team specifically for this mission. The submersible camera platforms, or ‘landers’, take five hours to reach the depths of the trenches and remain on the seafloor for two days before the signal is given for them to surface.

The team has been keeping an expedition blog, exclusive to Planet Earth online www.planetearth.nerc.ac.uk, a daily news site from the Natural Environment Research Council. The magazine website, which was launched last week, includes video footage and photographs of the expedition as well as blogs, podcasts, features and news.

Marion O'Sullivan | alfa
Further information:
http://www.nerc.ac.uk
http://www.planetearth.nerc.ac.uk
http://www.nerc.ac.uk/press/features/2008/hadeep.asp

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>