Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deepest-living fishes caught on camera for the first time

08.10.2008
Scientists filming in one of the world’s deepest ocean trenches have found groups of highly sociable snailfish swarming over their bait, nearly five miles (7700 metres) beneath the surface of the Pacific Ocean. This is the first time cameras have been sent to this depth.

‘We got some absolutely amazing footage from 7700 metres. More fish than we or anyone in the world would ever have thought possible at these depths,’ says project leader Dr Alan Jamieson of the University of Aberdeen’s Oceanlab, on board the Japanese research ship the Hakuho-Maru.

‘It’s incredible. These videos vastly exceed all our expectations from this research. We thought the deepest fishes would be motionless, solitary, fragile individuals eking out an existence in a food-sparse environment,’ says Professor Monty Priede, director of Oceanlab.

‘But these fish aren’t loners. The images show groups that are sociable and active – possibly even families – feeding on little shrimp, yet living in one of the most extreme environments on Earth.’

‘All we’ve seen before of life at this depth have been shrivelled specimens in museums. Now we have an impression of how they move and what they do. Having seen them moving so fast, snailfish seems a complete misnomer,’ he added.

Although some species of snailfish live in shallow water and even rock pools, the hadal snailfish are found exclusively below 6000 metres. Here they have to contend with total darkness, near freezing temperatures and immense water pressure – at this depth the pressure is 8,000 tonnes per square metre, equivalent to that of 1600 elephants standing on the roof of a Mini car. They feed on the thousands of tiny shrimp-like creatures that scavenge the carcasses of dead fish and detritus reaching the ocean floor.

Hadal snailfish live only in trenches around the Pacific Ocean, with different species confined to each region: the Chile and Peru trenches off South America, the Kermadec and Tonga trenches situated between Samoa and New Zealand in the South Pacific, and trenches of the North-West Pacific including the Japan trench, which Priede’s team is currently investigating.

The work is part of Oceanlab’s HADEEP project – a collaborative research programme with the University of Tokyo – devised by Priede to investigate life in the hadal region of the ocean, which is anything below 6000 metres down. The expedition, funded by the Natural Environment Research Council and the Nippon Foundation in Japan, started on 24 September and ended yesterday, 6 October.

The deep-sea equipment needed to survive the extreme pressure at these depths was designed and built by the Oceanlab team specifically for this mission. The submersible camera platforms, or ‘landers’, take five hours to reach the depths of the trenches and remain on the seafloor for two days before the signal is given for them to surface.

The team has been keeping an expedition blog, exclusive to Planet Earth online www.planetearth.nerc.ac.uk, a daily news site from the Natural Environment Research Council. The magazine website, which was launched last week, includes video footage and photographs of the expedition as well as blogs, podcasts, features and news.

Marion O'Sullivan | alfa
Further information:
http://www.nerc.ac.uk
http://www.planetearth.nerc.ac.uk
http://www.nerc.ac.uk/press/features/2008/hadeep.asp

More articles from Ecology, The Environment and Conservation:

nachricht Dune ecosystem modelling
23.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht Understanding animal social networks can aid wildlife conservation
23.06.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>