Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep-sea squid can 'jettison arms' as defensive tactic

03.08.2012
A postdoctoral researcher at the University of Rhode Island has observed a never-before-seen defensive strategy used by a small species of deep-sea squid in which the animal counter-attacks a predator and then leaves the tips of its arms attached to the predator as a distraction.

Stephanie Bush said that when the foot-long octopus squid (Octopoteuthis deletron) found deep in the northeast Pacific Ocean "jettisons its arms" in self-defense, the bioluminescent tips continue to twitch and glow, creating a diversion that enables the squid to escape from predators.

"If a predator is trying to attack them, they may dig the hooks on their arms into the predator's skin. Then the squid jets away and leaves its arm tips stuck to the predator," explained Bush. "The wriggling, bioluminescing arms might give the predator pause enough to allow the squid to get away."

The discovery was published in the July issue of the journal Marine Ecology Progress Series.

While Bush was a graduate researcher working with the Midwater Ecology Lab at the Monterey Bay Aquarium Research Institute, she observed that many octopus squid had arms of different lengths. Scientists had speculated that they may release their arms, just as lizards can release their tails when attacked, but no one had seen it happen. Using a remotely operated vehicle in the Monterey Bay Submarine Canyon off the coast of California, Bush poked at a squid with a bottlebrush.

"The very first time we tried it, the squid spread its arms wide and it was lighting up like fireworks," she said. "It then came forward and grabbed the bottlebrush and jetted backwards, leaving two arms on the bottlebrush. We think the hooks on its arms latched onto the bristles of the brush, and that was enough for the arms to just pop off."

The squid are able to re-grow their missing arms.

"There is definitely an energy cost associated with this behavior, but the cost is less than being dead," Bush said.

In further experiments, Bush found that some octopus squid appeared hesitant to sacrifice their limbs, but some did so after being prodded several times. When she provoked seven other squid species similarly, none dropped their arm tips.

Bush's research on squid began in 2003 when she decided to investigate the assumptions that some scientists had made about deep-sea animals.

"Scientists had assumed that squid living in the deep-sea would not release ink as a defensive measure, but all the species I've observed did release ink," she said. "They assumed that because they're in the dark all day every day that they're not doing the same things that shallow water squids are doing. They also assumed that deep-sea squid don't change color because of the dark, but they do."

The URI scientist's current research focuses on a tiny squid that lives in the Gulf of California that migrates every day from the dark depths where there is little oxygen to the surface waters to feed. She is examining their oxygen consumption rates and how increasing water temperatures will affect their survival.

"They're a really abundant species in the Gulf, so presumably if they are that abundant, they must be feeding on lots of different things and there must be lots of things feeding on them," Bush said. "They could be very important to the health of the ecosystem."

Todd McLeish | EurekAlert!
Further information:
http://www.uri.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The fastest light-driven current source

Controlling electronic current is essential to modern electronics, as data and signals are transferred by streams of electrons which are controlled at high speed. Demands on transmission speeds are also increasing as technology develops. Scientists from the Chair of Laser Physics and the Chair of Applied Physics at Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU) have succeeded in switching on a current with a desired direction in graphene using a single laser pulse within a femtosecond ¬¬ – a femtosecond corresponds to the millionth part of a billionth of a second. This is more than a thousand times faster compared to the most efficient transistors today.

Graphene is up to the job

Im Focus: LaserTAB: More efficient and precise contacts thanks to human-robot collaboration

At the productronica trade fair in Munich this November, the Fraunhofer Institute for Laser Technology ILT will be presenting Laser-Based Tape-Automated Bonding, LaserTAB for short. The experts from Aachen will be demonstrating how new battery cells and power electronics can be micro-welded more efficiently and precisely than ever before thanks to new optics and robot support.

Fraunhofer ILT from Aachen relies on a clever combination of robotics and a laser scanner with new optics as well as process monitoring, which it has developed...

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Nerves control the body’s bacterial community

26.09.2017 | Life Sciences

Four elements make 2-D optical platform

26.09.2017 | Physics and Astronomy

Goodbye, login. Hello, heart scan

26.09.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>