Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep-reef coral hates the light, prefers the shade

17.10.2011
Coral reefs are among the most diverse ecosystems on the planet, second only to tropical rain forests.

Bird's nest coral (Seriatopora hystrix) is common throughout the Indo-Pacific and is able to live across a range of depths. However, there is little gene flow between the coral populations at each depth and even the algal endosymbionts (Symbiodinium), which provide energy for the corals to survive, are genetically different across habitats.

New research published in BioMed Central's open access journal BMC Evolutionary Biology used genetic and photosynthetic analyses to demonstrate that these genetic differences reflect adaptations to the different environmental conditions encountered at different depths.

A team of researchers from the ARC Centre of Excellence for Coral Reef Studies and The University of Queensland looked at coral populations from three habitats on coral reefs: the sheltered back reef (Back Reef), the wave-exposed top of the reef slope (Upper Slope) and the dimly lit deeps (Deep Slope). Despite the fact that corals in the Deep Slope habitat only receive a fraction of the light available in shallow habitats (about 10 times less), the coral S. hystrix was found to be far more abundant at these depths and was also observed to grow faster.

Transplantation of coral fragments to different habitats did not alter the algae-host symbiosis. Dr. Sophie Dove explained, "The corals we looked at exhibited distinct physiological strategies - while normally corals are dependent on light for their energy requirements, the deep corals, appeared to have adapted to low light conditions by having an increased capacity to exploit nutrients and plankton."

Dr Pim Bongaerts, lead author of the paper, continued, "The different selective pressures across reef environments pose an ecological barrier to migration and further promote genetic divergence of these coral populations by limiting the extent of interbreeding. This case study of S. hystrix clearly shows how ecological processes of selection can play an important role in the diversification of corals."

Dr Hilary Glover
Scientific Press Officer, BioMed Central
Tel: 44-20-3192-2370
Email: hilary.glover@biomedcentral.com
Notes to Editors
1. Adaptive divergence in a scleractinian coral: physiological adaptation of Seriatopora hystrix to shallow and deep reef habitats
Pim Bongaerts, Cynthia Riginos, Kyra B Hay, Madeleine JH van Oppen, Ove Hoegh-Guldberg and Sophie Dove

BMC Evolutionary Biology (in press)

Please name the journal in any story you write. If you are writing for the web, please link to the article. All articles are available free of charge, according to BioMed Central's open access policy.

Article citation and URL available on request at press@biomedcentral.com on the day of publication.

2. BMC Evolutionary Biology is an Open Access, peer-reviewed online journal that considers articles on all aspects of molecular and non-molecular evolution of all organisms, as well as phylogenetics and palaeontology.

3. BioMed Central (http://www.biomedcentral.com/) is an STM (Science, Technology and Medicine) publisher which has pioneered the open access publishing model. All peer-reviewed research articles published by BioMed Central are made immediately and freely accessible online, and are licensed to allow redistribution and reuse. BioMed Central is part of Springer Science+Business Media, a leading global publisher in the STM sector.

Dr Hilary Glover | EurekAlert!
Further information:
http://www.biomedcentral.com

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>