Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep plumes of oil could cause dead zones in the Gulf

20.08.2010
A new simulation of oil and methane leaked into the Gulf of Mexico suggests that deep hypoxic zones or "dead zones" could form near the source of the pollution.

The research investigates five scenarios of oil and methane plumes at different depths and incorporates an estimated rate of flow from the Deepwater Horizon spill, which released oil and methane gas into the Gulf from April to mid July of this year.

A scientific paper on the research has been accepted for publication by Geophysical Research Letters, a journal of the American Geophysical Union,

Scientists at the National Oceanic and Atmospheric Administration (NOAA) and Princeton University conducted the research. Based on their simulations, they conclude that the ocean hypoxia or toxic concentrations of dissolved oil arising from the Deepwater Horizon blowout are likely to be "locally significant but regionally confined to the northern Gulf of Mexico."

A hypoxic or "dead" zone is a region of ocean where oxygen levels have dropped too low to support most forms of life, typically because microbes consuming a glut of nutrients in the water use up the local oxygen as they consume the material.

"According to our simulations, these hypoxic areas will be peaking in October," says study coauthor Robert Hallberg of the NOAA Geophysical Fluid Dynamics Laboratory in Princeton, N.J. "Oxygen drawdown will go away slowly, as the tainted water is mixed with Gulf waters that weren't affected. We're estimating a couple of years" before the dead zone has dissipated, he adds.

Although the Princeton-NOAA study was carried out when the flow rate from the Deepwater Horizon spill was still underestimated, the simulated leak lasted longer than did the actual spill.

Consequently, says Alistair Adcroft of Princeton University and the NOAA Geophysical Fluid Dynamics Laboratory, another study coauthor, "the overall impact on oxygen turns out to be about the same" as would be expected from the Deepwater Horizon spill.

Maria-Jose Vinas | American Geophysical Union
Further information:
http://www.agu.org

Further reports about: Deepwater Gulf of Maine region NOAA Oxygen dead zones fluid dynamics methane plumes

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>