Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Deep plumes of oil could cause dead zones in the Gulf

20.08.2010
A new simulation of oil and methane leaked into the Gulf of Mexico suggests that deep hypoxic zones or "dead zones" could form near the source of the pollution.

The research investigates five scenarios of oil and methane plumes at different depths and incorporates an estimated rate of flow from the Deepwater Horizon spill, which released oil and methane gas into the Gulf from April to mid July of this year.

A scientific paper on the research has been accepted for publication by Geophysical Research Letters, a journal of the American Geophysical Union,

Scientists at the National Oceanic and Atmospheric Administration (NOAA) and Princeton University conducted the research. Based on their simulations, they conclude that the ocean hypoxia or toxic concentrations of dissolved oil arising from the Deepwater Horizon blowout are likely to be "locally significant but regionally confined to the northern Gulf of Mexico."

A hypoxic or "dead" zone is a region of ocean where oxygen levels have dropped too low to support most forms of life, typically because microbes consuming a glut of nutrients in the water use up the local oxygen as they consume the material.

"According to our simulations, these hypoxic areas will be peaking in October," says study coauthor Robert Hallberg of the NOAA Geophysical Fluid Dynamics Laboratory in Princeton, N.J. "Oxygen drawdown will go away slowly, as the tainted water is mixed with Gulf waters that weren't affected. We're estimating a couple of years" before the dead zone has dissipated, he adds.

Although the Princeton-NOAA study was carried out when the flow rate from the Deepwater Horizon spill was still underestimated, the simulated leak lasted longer than did the actual spill.

Consequently, says Alistair Adcroft of Princeton University and the NOAA Geophysical Fluid Dynamics Laboratory, another study coauthor, "the overall impact on oxygen turns out to be about the same" as would be expected from the Deepwater Horizon spill.

Maria-Jose Vinas | American Geophysical Union
Further information:
http://www.agu.org

Further reports about: Deepwater Gulf of Maine region NOAA Oxygen dead zones fluid dynamics methane plumes

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Attoseconds break into atomic interior

A newly developed laser technology has enabled physicists in the Laboratory for Attosecond Physics (jointly run by LMU Munich and the Max Planck Institute of Quantum Optics) to generate attosecond bursts of high-energy photons of unprecedented intensity. This has made it possible to observe the interaction of multiple photons in a single such pulse with electrons in the inner orbital shell of an atom.

In order to observe the ultrafast electron motion in the inner shells of atoms with short light pulses, the pulses must not only be ultrashort, but very...

Im Focus: Good vibrations feel the force

A group of researchers led by Andrea Cavalleri at the Max Planck Institute for Structure and Dynamics of Matter (MPSD) in Hamburg has demonstrated a new method enabling precise measurements of the interatomic forces that hold crystalline solids together. The paper Probing the Interatomic Potential of Solids by Strong-Field Nonlinear Phononics, published online in Nature, explains how a terahertz-frequency laser pulse can drive very large deformations of the crystal.

By measuring the highly unusual atomic trajectories under extreme electromagnetic transients, the MPSD group could reconstruct how rigid the atomic bonds are...

Im Focus: Developing reliable quantum computers

International research team makes important step on the path to solving certification problems

Quantum computers may one day solve algorithmic problems which even the biggest supercomputers today can’t manage. But how do you test a quantum computer to...

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Basque researchers turn light upside down

23.02.2018 | Physics and Astronomy

Finnish research group discovers a new immune system regulator

23.02.2018 | Health and Medicine

Attoseconds break into atomic interior

23.02.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>