Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Decreased Water Flow May be Trade-off for More Productive Forest

Bubbling brooks and streams are a scenic and much loved feature of forest ecosystems, but long-term data at the U.S. Forest Service’s Hubbard Brook Experimental Forest suggests that more productive forests might carry considerably less water, according to a study published today in the journal Proceedings of the National Academy of Sciences.
Mark Green, a research hydrologist with the Forest Service’s Northern Research Station and an assistant professor at Plymouth State University, is the lead author for the study titled “Decreased Water Flowing from a Forest Amended with Calcium Silicate.”

Acid rain during the 20th century caused widespread depletion of available soil calcium, an essential plant nutrient, throughout much of the industrialized world. In 1999, scientists at the Forest Service’s Hubbard Brook Experimental Forest in the White Mountains of New Hampshire restored soil calcium levels to pre-industrial levels in a small watershed in an effort to better understand the ecological consequences of the depletion of available soil calcium. Subsequent studies demonstrated that following the application of a finely ground and pelletized calcium silicate mineral called wollastonite, species such as red spruce and sugar maple experienced improved cold hardiness and less seedling mortality in areas where calcium was applied.

When Green reviewed the long-term data several years later, he found something surprising about the 1999 study: within 5 months of the application of wollastonite across a 30-acre watershed, there was a substantial increase in forest water use compared to a nearby watershed that was not treated with calcium.

“Our results in this study show that when we create a substantial increase in soil calcium, this forest responded by using more water, partly associated with increased growth. The result is that we see a change in forest hydrology,” Green said. “We still have to determine whether the prior decrease in soil calcium due to acid rain caused a proportional decrease in evapotranspiration and thus greater streamflow, and if that means that when forests recover from acid deposition we’ll see a decrease in water flowing in streams.”

As the need for carbon sequestration, biofuels, and other forest products increases, the study suggests that there might be unintended consequences to enhancing ecosystems using fertilization.

“Long-term ecological research is important to understanding the health and sustainability of the nation’s forests,” said Michael T. Rains, Director of the Northern Research Station. “With a network of more than 80 experimental forests located across the country and decades of monitoring data from this network, the Forest Service is contributing invaluable information about forest conditions along a complex rural to urban land gradient as well as discovering other trends through a wide-range of ongoing critical research topics.”

Co-authors include NRS researchers Amey Bailey, Scott Bailey, John Campbell, and Paul Schaberg, and John Battles of the University of California, Berkley, Charles Driscoll of Syracuse University, Timothy Fahey of Cornell University, Lucie Lepine of the University of New Hampshire, Gene Likens of the Cary Institute of Ecosystem Studies and University of Connecticut, and Scott Ollinger of the University of New Hampshire.

The Hubbard Brook Experimental Forest is a 7,200-acre valley located in the southern part of the White Mountains of New Hampshire. One of 80 experimental forests within the U.S. Forest Service’s Research and Development arm, Hubbard Brook Experimental Forest has served as an outdoor laboratory for ecological study since 1955. Forest Service scientists as well as scientists from agencies and universities throughout the world have studied the quantity and chemistry of water going into the forest in precipitation and out of the forest in stream water at Hubbard Brook Experimental Forest.

The mission of the U.S. Forest Service is to sustain the health, diversity, and productivity of the nation’s forests and grasslands to meet the needs of present and future generations. The agency has either a direct or indirect role in stewardship of about 80 percent of the 850 million forested acres within the U.S., of which 100 million acres are urban forests where most Americans live. The mission of the Forest Service’s Northern Research Station is to improve people’s lives and help sustain the natural resources in the Northeast and Midwest through leading-edge science and effective information delivery.

Jane Hodgins | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>