Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decrease in large wildlife drives an increase in rodent-borne disease and risk to humans

29.04.2014

Populations of large wildlife are declining around the world, while zoonotic diseases (those transmitted from animals to humans) are on the rise.

A team of Smithsonian scientists and colleagues have discovered a possible link between the two. They found that in East Africa, the loss of large wildlife directly correlated with a significant increase in rodents, which often carry disease-causing bacteria dangerous to humans. The team's research is published in the Proceedings of the National Academy of Sciences, April 28.


Smithsonian scientists found that when large wildlife like zebras decline on the African savanna, either due to a decreasing population or human made barriers like roads and fences, it can a significant increase in rodents, which often carry disease-causing bacteria dangerous to humans.

Credit: Smithsonian

"Our study shows us that ecosystem health, wildlife health and human health are all related," said Kristofer Helgen, curator of mammals at the Smithsonian's National Museum of Natural History and co-author of the research.

Large animals, such as elephants, giraffes, antelope and zebras, have a profound influence on their ecosystems by feeding on vast amounts of vegetation and compacting and disturbing soil. As populations of these large species decline, the ecosystems they once dominated change in many ways.

The team's main question was whether the loss of large wildlife influences the risk of people contracting diseases spread by rodents—a pressing question, as more than 60 percent of infectious human diseases are zoonotic.

"Understanding the linkages between biodiversity loss and zoonotic disease is important for both public health and nature conservation programs," said Hillary Young, former Smithsonian post-doctoral fellow and current assistant professor at the University of California, Santa Barbara. "While this correlation has been the topic of much scientific debate, ours is one of the only studies to offer clear experimental evidence." Young is the lead author of the research paper.

Using 24 acres of savanna that had been fenced off for 15 years to keep large animals out in central Kenya, the scientists examined rodent populations inside and outside the area for three years.

They also tracked the presence of Bartonella infections in the rodents and their fleas. Bartonella, a group of bacteria found around the world, can cause bartonellosis in humans—an infectious disease that can lead to joint swelling, liver damage, memory loss and other symptoms.

The team regularly trapped rodents in the area, represented by several species of mice, rats and gerbils. Each rodent was identified to species, sexed, weighed and marked. A blood sample and fleas, if they were present, were collected from each rodent for testing before it was released where it was captured.

The team found that rodent and, consequently, flea abundance doubled inside the area that excluded large wildlife. Without having to compete with large animals for food, the rodent population grew twofold. When the rodents and fleas in the area doubled, the team found that those infected with Bartonella doubled as well.

The removal of large wildlife from the ecosystem could be directly linked to the increase in rodents and the rodent-borne disease, thus increasing risk to humans. These results suggest that a partial solution to problems of rodent-borne disease could come in the form of wildlife conservation.

"Africa's large wildlife faces many threats—elephants, rhinos and other large mammals continue to decline in the face of growing human populations, expanding agriculture and the impacts of poaching and wildlife trade," said Helgen. "While we know that conservation is good for wildlife and for economies reliant on tourism, our study shows a less-intuitive dimension of conservation that could greatly benefit the people living alongside wildlife."

This study is the first of several more to come. The team plans to expand its research to a wider suite of infectious diseases to see which might respond similarly and which do not. They will also undertake further studies not only in carefully controlled experimental sites but in the "real world" where humans have already altered the landscape and eradicated much of the large wildlife.

The team's research has implications well beyond Africa. "While rodent-borne diseases are a major issue in Africa, they are everywhere—Europe, Asia, North and South America," Young said. "What we find here may very well be applicable in other parts of the world."

John Gibbons | Eurek Alert!

Further reports about: Bartonella Smithsonian bacteria diseases experimental populations rodent species

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Switched-on DNA

20.02.2017 | Materials Sciences

Second cause of hidden hearing loss identified

20.02.2017 | Health and Medicine

Prospect for more effective treatment of nerve pain

20.02.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>