Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Declining Winter Snowpack May Not Dramatically Impact Upland Ecosystems

19.12.2011
Two studies by Boise State University geoscientists provide new information about how snowmelt is stored and used in mountain environments.

Global warming is reducing snowpacks across the western United States, with potentially far-reaching implications for downstream water resources. In the studies, Boise State researchers wanted to know how changing snowpacks will impact upland ecosystems in areas of the mountains that are not near streams.

The Boise State geoscientists found the benefit of winter snow accumulation to high-elevation ecosystems is limited by the soil’s ability to store water. While mountain snowpacks are important natural reservoirs extending spring and summer water delivery to downstream users and ecosystems, the study found that the coarse-grained, shallow soils can store only a fraction of the snowmelt into the summer when the water is needed. This means that declines in snowpack may have a minimal impact on summer water availability in these locations.

In a related study, researchers found a large difference in the capacity of the soil to store water on north-and south-facing slopes. The study found soils on north-facing slopes in a semi-arid mountain region in Idaho can hold up to 50 percent more water than soils on south-facing slopes. Because south-facing slopes dry out faster, the ability of vegetation to survive the dry summers is limited. The study also found that the more heavily vegetated north-facing slopes have the capacity to store more water because of finer-grained and deeper soils, which in turn produce drastically different soil water retention capacity. The researchers concluded that these differences are driven by various levels of solar radiation; the south-facing soils receive considerably more light and energy from the sun than their north-facing counterparts.

Researchers say these studies do not suggest that upland ecosystems will be less sensitive to climate change, but rather that changes to winter snowpack may not be the primary reason for the impact.

Both studies appear online in the journal Hydrological Processes.

“What is interesting about these studies is they suggest that the soils might be more sensitive to changes in precipitation timing rather than amount,” said studies’ coauthor Jim McNamara, professor of geosciences. “The limited ability of soils to store water from snowmelt highlights the potential importance of spring and early summer precipitation, and changes in spring precipitation may have a profound impact on upland water availability.”

The researchers took weather data and soil samples from nearly a dozen sites in the Dry Creek Watershed outside Boise at various times throughout a year. The study sites were located at four elevations ranging from 2,000 feet to 5,000 feet, with two sites on north and south-facing slopes at each specific elevation. Estimates of mean annual precipitation and mean annual air temperature were calculated for the elevation of each site and soil moisture sensors were installed at multiple depths.

The scientists found soil porosity, soil organic matter and silt content all were greater on the north-facing slopes and each contributed to higher water retention in the soil. These results, along with the observation that soils on north-facing slopes tend to be deeper, indicate that north-facing slopes in this region can store more water from the wet winter months into the dry summer.

Matt Pene | Newswise Science News
Further information:
http://www.boisestate.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>