Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Declining Winter Snowpack May Not Dramatically Impact Upland Ecosystems

19.12.2011
Two studies by Boise State University geoscientists provide new information about how snowmelt is stored and used in mountain environments.

Global warming is reducing snowpacks across the western United States, with potentially far-reaching implications for downstream water resources. In the studies, Boise State researchers wanted to know how changing snowpacks will impact upland ecosystems in areas of the mountains that are not near streams.

The Boise State geoscientists found the benefit of winter snow accumulation to high-elevation ecosystems is limited by the soil’s ability to store water. While mountain snowpacks are important natural reservoirs extending spring and summer water delivery to downstream users and ecosystems, the study found that the coarse-grained, shallow soils can store only a fraction of the snowmelt into the summer when the water is needed. This means that declines in snowpack may have a minimal impact on summer water availability in these locations.

In a related study, researchers found a large difference in the capacity of the soil to store water on north-and south-facing slopes. The study found soils on north-facing slopes in a semi-arid mountain region in Idaho can hold up to 50 percent more water than soils on south-facing slopes. Because south-facing slopes dry out faster, the ability of vegetation to survive the dry summers is limited. The study also found that the more heavily vegetated north-facing slopes have the capacity to store more water because of finer-grained and deeper soils, which in turn produce drastically different soil water retention capacity. The researchers concluded that these differences are driven by various levels of solar radiation; the south-facing soils receive considerably more light and energy from the sun than their north-facing counterparts.

Researchers say these studies do not suggest that upland ecosystems will be less sensitive to climate change, but rather that changes to winter snowpack may not be the primary reason for the impact.

Both studies appear online in the journal Hydrological Processes.

“What is interesting about these studies is they suggest that the soils might be more sensitive to changes in precipitation timing rather than amount,” said studies’ coauthor Jim McNamara, professor of geosciences. “The limited ability of soils to store water from snowmelt highlights the potential importance of spring and early summer precipitation, and changes in spring precipitation may have a profound impact on upland water availability.”

The researchers took weather data and soil samples from nearly a dozen sites in the Dry Creek Watershed outside Boise at various times throughout a year. The study sites were located at four elevations ranging from 2,000 feet to 5,000 feet, with two sites on north and south-facing slopes at each specific elevation. Estimates of mean annual precipitation and mean annual air temperature were calculated for the elevation of each site and soil moisture sensors were installed at multiple depths.

The scientists found soil porosity, soil organic matter and silt content all were greater on the north-facing slopes and each contributed to higher water retention in the soil. These results, along with the observation that soils on north-facing slopes tend to be deeper, indicate that north-facing slopes in this region can store more water from the wet winter months into the dry summer.

Matt Pene | Newswise Science News
Further information:
http://www.boisestate.edu

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

Im Focus: The Future of Ultrafast Solid-State Physics

In an article that appears in the journal “Review of Modern Physics”, researchers at the Laboratory for Attosecond Physics (LAP) assess the current state of the field of ultrafast physics and consider its implications for future technologies.

Physicists can now control light in both time and space with hitherto unimagined precision. This is particularly true for the ability to generate ultrashort...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Diamond-like carbon is formed differently to what was believed -- machine learning enables development of new model

19.04.2018 | Materials Sciences

Electromagnetic wizardry: Wireless power transfer enhanced by backward signal

19.04.2018 | Physics and Astronomy

Ultrafast electron oscillation and dephasing monitored by attosecond light source

19.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>