Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Declining Winter Snowpack May Not Dramatically Impact Upland Ecosystems

19.12.2011
Two studies by Boise State University geoscientists provide new information about how snowmelt is stored and used in mountain environments.

Global warming is reducing snowpacks across the western United States, with potentially far-reaching implications for downstream water resources. In the studies, Boise State researchers wanted to know how changing snowpacks will impact upland ecosystems in areas of the mountains that are not near streams.

The Boise State geoscientists found the benefit of winter snow accumulation to high-elevation ecosystems is limited by the soil’s ability to store water. While mountain snowpacks are important natural reservoirs extending spring and summer water delivery to downstream users and ecosystems, the study found that the coarse-grained, shallow soils can store only a fraction of the snowmelt into the summer when the water is needed. This means that declines in snowpack may have a minimal impact on summer water availability in these locations.

In a related study, researchers found a large difference in the capacity of the soil to store water on north-and south-facing slopes. The study found soils on north-facing slopes in a semi-arid mountain region in Idaho can hold up to 50 percent more water than soils on south-facing slopes. Because south-facing slopes dry out faster, the ability of vegetation to survive the dry summers is limited. The study also found that the more heavily vegetated north-facing slopes have the capacity to store more water because of finer-grained and deeper soils, which in turn produce drastically different soil water retention capacity. The researchers concluded that these differences are driven by various levels of solar radiation; the south-facing soils receive considerably more light and energy from the sun than their north-facing counterparts.

Researchers say these studies do not suggest that upland ecosystems will be less sensitive to climate change, but rather that changes to winter snowpack may not be the primary reason for the impact.

Both studies appear online in the journal Hydrological Processes.

“What is interesting about these studies is they suggest that the soils might be more sensitive to changes in precipitation timing rather than amount,” said studies’ coauthor Jim McNamara, professor of geosciences. “The limited ability of soils to store water from snowmelt highlights the potential importance of spring and early summer precipitation, and changes in spring precipitation may have a profound impact on upland water availability.”

The researchers took weather data and soil samples from nearly a dozen sites in the Dry Creek Watershed outside Boise at various times throughout a year. The study sites were located at four elevations ranging from 2,000 feet to 5,000 feet, with two sites on north and south-facing slopes at each specific elevation. Estimates of mean annual precipitation and mean annual air temperature were calculated for the elevation of each site and soil moisture sensors were installed at multiple depths.

The scientists found soil porosity, soil organic matter and silt content all were greater on the north-facing slopes and each contributed to higher water retention in the soil. These results, along with the observation that soils on north-facing slopes tend to be deeper, indicate that north-facing slopes in this region can store more water from the wet winter months into the dry summer.

Matt Pene | Newswise Science News
Further information:
http://www.boisestate.edu

More articles from Ecology, The Environment and Conservation:

nachricht How does the loss of species alter ecosystems?
18.05.2017 | Deutsches Zentrum für integrative Biodiversitätsforschung (iDiv) Halle-Jena-Leipzig

nachricht Excess diesel emissions bring global health & environmental impacts
16.05.2017 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

Im Focus: Hydrogen Bonds Directly Detected for the First Time

For the first time, scientists have succeeded in studying the strength of hydrogen bonds in a single molecule using an atomic force microscope. Researchers from the University of Basel’s Swiss Nanoscience Institute network have reported the results in the journal Science Advances.

Hydrogen is the most common element in the universe and is an integral part of almost all organic compounds. Molecules and sections of macromolecules are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

Media accreditation opens for historic year at European Health Forum Gastein

16.05.2017 | Event News

 
Latest News

New approach to revolutionize the production of molecular hydrogen

22.05.2017 | Materials Sciences

Scientists enlist engineered protein to battle the MERS virus

22.05.2017 | Life Sciences

Experts explain origins of topographic relief on Earth, Mars and Titan

22.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>