Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decline in Alaskan sea otters affects bald eagles' diet

07.10.2008
Eagles shift their diet from aquatic marine animals to birds

Sea otters are known as a keystone species, filling such an important niche in ocean communities that without them, entire ecosystems can collapse. Scientists are finding, however, that sea otters can have even farther-reaching effects that extend to terrestrial communities and alter the behavior of another top predator: the bald eagle.

In nearshore marine communities, towering kelp can reach heights of 250 feet and function much like trees in a forest, providing food, homes and protection for fish and invertebrates. The most important enemies of these giant algae are tiny sea urchins, only inches in diameter, which live on the kelp's holdfasts and eat its tissue. When urchin populations become too large, they can defoliate entire kelp forests, leaving only barren remains.

Enter the sea otter. Otters can eat the spiky urchins whole, making them the major urchin predator. The otters' presence keeps urchin populations in check and maintains the balance of the ecosystem.

Scientists have known about these kelp forest community interactions since the 1970s. But in the October issue of the journal Ecology, Robert Anthony and colleagues report that the presence or absence of otters can also affect the diet of bald eagles, a neighboring terrestrial predator. Anthony is an ecologist with the Oregon Cooperative Fish & Wildlife Research Unit of the U.S. Geological Survey and Oregon State University.

Bald eagles live in high densities along the Aleutian archipelago off the coast of Alaska and place their nests on islets, coastal cliffs and shoreline sea stacks. Historically, more than 90 percent of the eagles' food comes from the ocean. Sea otters once also occupied a large range of coastal marine environments near these islands, but in recent years, otter populations have declined in response to their own main predator.

"All of the available data point to increased numbers of killer whales as the direct cause of the sea otter decline in southwest Alaska," says coauthor Jim Estes of the U.S.G.S. and the University of California at Santa Cruz. "The otter decline has caused a phase shift in the coastal ecosystem from a kelp dominated phase state to a deforested phase state."

This shift means many fewer kelp forest fish for the eagles to eat. In response, the eagles have adjusted their foraging tactics. Anthony and his colleagues surveyed remains of bald eagle prey in their nests during 1993 and 1994, when otters were abundant and the kelp forests were healthy, and in 2000, 2001 and 2002, when otters were scarce and the kelp forests had collapsed. They found that when otters were abundant, eagle prey consisted of predominantly kelp-forest fish and sea otter pups. When the otters were rare, however, the proportion of marine birds in the eagles' diet was much higher.

Anthony explains that because the eagles defend territories in dense patches along the coastline and there are few terrestrial animals to eat, they must be flexible in what they hunt.

"These bald eagles are opportunistic foragers as a consequence of their evolutionary history," he says. "They've developed foraging territories they defend against members of the same species along these coastlines, and the terrestrial environment provides very little for them. So they forage over the open water."

Anthony and his colleagues also found that the eagles had more young on average during 2000-2002, a fact that Anthony believes might be a result of a high caloric content in the eagles' increasingly seabird-dominated diet.

"Across the range of this species, their diet can be quite varied, but here it appears as though the change in diet had either a neutral or positive effect," he says. The propensity of the eagles to adapt quickly to a changing environment may have allowed them to flourish, but Anthony also cautions that adapting to this scenario might be difficult for more specialized predators.

The results are the first to show that the presence or absence of otters influences a terrestrial animal, and that the complex food web linkages can reach as far as five different food chain levels: from sea otters to sea urchins, kelp, marine fish and finally bald eagles.

"Top-down linkages can be very distant from their origin," says Anthony. "The effects of top predators can ripple throughout the ecosystem in ways we're just beginning to understand."

Christine Buckley | EurekAlert!
Further information:
http://www.esa.org

More articles from Ecology, The Environment and Conservation:

nachricht Safeguarding sustainability through forest certification mapping
27.06.2017 | International Institute for Applied Systems Analysis (IIASA)

nachricht Dune ecosystem modelling
26.06.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>