Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decades of Data Show Spring Advancing Faster Than Experiments Suggest

03.05.2012
Plants are leafing out and flowering sooner each year than predicted by results from controlled environmental warming experiments, according to data from a major new archive of historical observations assembled with the help of a NASA researcher.

Researchers use experiments that manipulate the temperature of the environment surrounding small plots of plants to gauge how specific plants will react to higher temperatures. The observed plant responses can then be incorporated into models that predict future ecosystem changes as temperatures around the globe continue to rise. But when a group of scientists compared these results to a massive new archive of historical observations, they found that the warming experiments are dramatically underestimating how plants respond to climate change.

The results were published online in the journal Nature on May 2. In addition to quantifying how a broad collection of plant species have responded to date to rising temperatures, the study suggests that the way warming experiments are conducted needs to be re-evaluated.

"This suggests that predicted ecosystem changes -- including continuing advances in the start of spring across much of the globe -- may be far greater than current estimates based on data from warming experiments," said Elizabeth Wolkovich, who led the interdisciplinary team of scientists behind the new research while she was a postdoctoral fellow at the University of California, San Diego. "The long-term records show that phenology is changing much faster than estimated based on the results of the warming experiments. This suggests we need to reassess how we design and use results from these experiments."

Benjamin Cook, of NASA's Goddard Institute for Space Studies and Columbia University, New York, worked with Wolkovich to create the massive new archive of long-term, natural phenology observations to gauge the accuracy of the phenological predictions based on these plant warming experiments. The archive includes data from 1,558 species of wild plants on four continents. The historical records showed that leafing and flowering will advance, on average, five to six days per degree Celsius -- a finding that was consistent across species and datasets. These data show that estimates based on data from warming experiments are underpredicting advances in flowering by eight and a half times and advances in leafing by four times. The authors expect the data archive to be an important benchmark in future phenology studies.

"These results are important because we rely heavily on warming experiments to predict what will happen to ecosystems in the future," said Cook, who helped bring together a research team including support from the National Center on Ecological Analysis and Synthesis to build the archive of real-world observations. "With these long-term observational records you may be able to pick up a shift in a plant community over a few years that you wouldn't be able to observe in an experiment."

The study of phenology, the timing of annual plant events such as the first flowering and leafing out of spring, provides one of the most consistent and visible responses to climate change. Long-term historical records, some stretching back decades and even centuries, show many species are now flowering and leafing out earlier, in step with rising temperatures. Because these records aren't available everywhere and predicted future warming is often outside the range of historical records, ecologists often use controlled experiments that create warmer conditions in small plots to estimate how different species will respond to expected temperature increases.

The timing of plants' flowering and leafing out in spring is not only a basic, natural indicator of the state of the climate. Predicting plant responses to climate change has important consequences for human water supply, pollination of crops and overall ecosystem health.

Wolkovich, Cook and colleagues suggest a number of potential reasons the estimates based on experimental data have underpredicted the plant response to higher temperatures. There could be additional effects of climate change not mirrored in the controlled experiments, or from the fact that the methods used to create warmth in the studies could be creating counteracting effects such as drying out soils or reducing the amount of sunlight reaching the plants.

"Continuing efforts to improve the design of warming experiments while maintaining and extending long-term historical monitoring will be critical to pinpointing the reasons for the differences, and will yield a more accurate picture of future plant communities and ecosystems with continuing climate change," Wolkovich said.

Goddard Release No. 12-042

Leslie McCarthy
NASA's Goddard Institute for Space Studies, New York, N.Y.
212-678-5507
leslie.m.mccarthy@nass.gov
Patrick Lynch
NASA's Goddard Space Flight Center, Greenbelt, Md.
301-286-3854 / 757-897-2047
patrick.lynch@nasa.gov

Patrick Lynch | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/earth/features/early-bloom.html

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>