Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Decades of Data Show Spring Advancing Faster Than Experiments Suggest

03.05.2012
Plants are leafing out and flowering sooner each year than predicted by results from controlled environmental warming experiments, according to data from a major new archive of historical observations assembled with the help of a NASA researcher.

Researchers use experiments that manipulate the temperature of the environment surrounding small plots of plants to gauge how specific plants will react to higher temperatures. The observed plant responses can then be incorporated into models that predict future ecosystem changes as temperatures around the globe continue to rise. But when a group of scientists compared these results to a massive new archive of historical observations, they found that the warming experiments are dramatically underestimating how plants respond to climate change.

The results were published online in the journal Nature on May 2. In addition to quantifying how a broad collection of plant species have responded to date to rising temperatures, the study suggests that the way warming experiments are conducted needs to be re-evaluated.

"This suggests that predicted ecosystem changes -- including continuing advances in the start of spring across much of the globe -- may be far greater than current estimates based on data from warming experiments," said Elizabeth Wolkovich, who led the interdisciplinary team of scientists behind the new research while she was a postdoctoral fellow at the University of California, San Diego. "The long-term records show that phenology is changing much faster than estimated based on the results of the warming experiments. This suggests we need to reassess how we design and use results from these experiments."

Benjamin Cook, of NASA's Goddard Institute for Space Studies and Columbia University, New York, worked with Wolkovich to create the massive new archive of long-term, natural phenology observations to gauge the accuracy of the phenological predictions based on these plant warming experiments. The archive includes data from 1,558 species of wild plants on four continents. The historical records showed that leafing and flowering will advance, on average, five to six days per degree Celsius -- a finding that was consistent across species and datasets. These data show that estimates based on data from warming experiments are underpredicting advances in flowering by eight and a half times and advances in leafing by four times. The authors expect the data archive to be an important benchmark in future phenology studies.

"These results are important because we rely heavily on warming experiments to predict what will happen to ecosystems in the future," said Cook, who helped bring together a research team including support from the National Center on Ecological Analysis and Synthesis to build the archive of real-world observations. "With these long-term observational records you may be able to pick up a shift in a plant community over a few years that you wouldn't be able to observe in an experiment."

The study of phenology, the timing of annual plant events such as the first flowering and leafing out of spring, provides one of the most consistent and visible responses to climate change. Long-term historical records, some stretching back decades and even centuries, show many species are now flowering and leafing out earlier, in step with rising temperatures. Because these records aren't available everywhere and predicted future warming is often outside the range of historical records, ecologists often use controlled experiments that create warmer conditions in small plots to estimate how different species will respond to expected temperature increases.

The timing of plants' flowering and leafing out in spring is not only a basic, natural indicator of the state of the climate. Predicting plant responses to climate change has important consequences for human water supply, pollination of crops and overall ecosystem health.

Wolkovich, Cook and colleagues suggest a number of potential reasons the estimates based on experimental data have underpredicted the plant response to higher temperatures. There could be additional effects of climate change not mirrored in the controlled experiments, or from the fact that the methods used to create warmth in the studies could be creating counteracting effects such as drying out soils or reducing the amount of sunlight reaching the plants.

"Continuing efforts to improve the design of warming experiments while maintaining and extending long-term historical monitoring will be critical to pinpointing the reasons for the differences, and will yield a more accurate picture of future plant communities and ecosystems with continuing climate change," Wolkovich said.

Goddard Release No. 12-042

Leslie McCarthy
NASA's Goddard Institute for Space Studies, New York, N.Y.
212-678-5507
leslie.m.mccarthy@nass.gov
Patrick Lynch
NASA's Goddard Space Flight Center, Greenbelt, Md.
301-286-3854 / 757-897-2047
patrick.lynch@nasa.gov

Patrick Lynch | EurekAlert!
Further information:
http://www.nasa.gov
http://www.nasa.gov/topics/earth/features/early-bloom.html

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecules Brilliantly Illuminated

Physicists at the Laboratory for Attosecond Physics, which is jointly run by Ludwig-Maximilians-Universität and the Max Planck Institute of Quantum Optics, have developed a high-power laser system that generates ultrashort pulses of light covering a large share of the mid-infrared spectrum. The researchers envisage a wide range of applications for the technology – in the early diagnosis of cancer, for instance.

Molecules are the building blocks of life. Like all other organisms, we are made of them. They control our biorhythm, and they can also reflect our state of...

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Structured light and nanomaterials open new ways to tailor light at the nanoscale

23.04.2018 | Physics and Astronomy

On the shape of the 'petal' for the dissipation curve

23.04.2018 | Physics and Astronomy

Clean and Efficient – Fraunhofer ISE Presents Hydrogen Technologies at the HANNOVER MESSE 2018

23.04.2018 | Trade Fair News

VideoLinks
Science & Research
Overview of more VideoLinks >>>