Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Death--Not Just Life--Important Link in Marine Ecosystems

Carcasses of copepods--numerous organisms in world seas--provide insights into oceanic food webs

Tiny crustaceans called copepods rule the world, at least when it comes to oceans and estuaries.

The most numerous multi-cellular organisms in the seas, copepods are an important link between phytoplankton and fish in marine food webs.

To understand and predict how copepods respond to environmental change, scientists need to know not only how many new copepods are born, but how many are dying, say biological oceanographers David Elliott of the University of Maryland Center for Environmental Science and the Virginia Institute of Marine Science (VIMS), and Kam Tang of VIMS.

Elliott and Tang realized there was only one way to discover the answer: find the copepods' carcasses.

Mortality of copepods and other zooplankton is often assumed to be the result of predators.

Several studies have observed, however, that many dead copepods are found in samples of seawater. "This is more indicative of non-predatory mortality," says Elliott.

But traditional sampling often ignores the live/dead "status" of the copepods, Elliott says, and little is known about how many copepod carcasses are in fact floating around in the water.

Using a newly improved staining method to help distinguish between live and dead copepods in water samples from Chesapeake Bay, Elliott and Tang observed substantial numbers of intact copepod carcasses.

An average of 12 to 30 percent of the developmental stages of the abundant coastal copepod species Acartia tonsa were dead.

They found that these were likely the result of mortality for other reasons than predators.

"Using a relatively simple staining procedure to distinguish live from dead copepods, Elliott and Tang have been able to arrive at a more accurate picture of predation versus other sources of mortality for estuarine copepod populations," says David Garrison, program director in the National Science Foundation's (NSF) Division of Ocean Sciences, which funded the research.

The results were published today in the journal Marine Ecology Progress Series.

To better understand the fate of the copepod carcasses, they conducted a series of field and laboratory experiments to investigate where the copepod carcasses eventually ended up.

"We found that mixing in the water was enough to keep many carcasses in suspension in places like the shallows of Chesapeake Bay," says Elliott.

"Applying the results to the deeper open ocean, copepod carcasses become less dense as they decompose, such that they can reach neutral buoyancy and float around for some time before reaching the sea floor."

Much of the organic matter from copepods that die of non-predatory causes is recycled in sea water, he believes, rather than being directly transferred to the ocean-bottom as the remains of copepods sink.

The information on the fate of copepod carcasses was then used to estimate the rate at which copepods in Chesapeake Bay die from non-predatory causes.

Non-predatory copepod deaths accounted for more than ten percent of all mortality. The finding provides a more accurate view of how copepod abundance changes throughout the year.

"The presence of copepod carcasses in the marine environment indicates the importance of non-predatory mortality factors," says Elliott. "It represents a diversion of energy from the traditional food chain that supports fish, to one that fuels microbes.

"A better understanding of the factors causing non-predatory mortality will improve predictability of the amount of copepod prey available to fish."

That knowledge, in turn, may lead to new ways of looking at the abundance of fish in Chesapeake Bay--and beyond.

Media Contacts
Cheryl Dybas, NSF (703) 292-7734
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Cheryl Dybas | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>