Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Death--Not Just Life--Important Link in Marine Ecosystems

14.04.2011
Carcasses of copepods--numerous organisms in world seas--provide insights into oceanic food webs

Tiny crustaceans called copepods rule the world, at least when it comes to oceans and estuaries.

The most numerous multi-cellular organisms in the seas, copepods are an important link between phytoplankton and fish in marine food webs.

To understand and predict how copepods respond to environmental change, scientists need to know not only how many new copepods are born, but how many are dying, say biological oceanographers David Elliott of the University of Maryland Center for Environmental Science and the Virginia Institute of Marine Science (VIMS), and Kam Tang of VIMS.

Elliott and Tang realized there was only one way to discover the answer: find the copepods' carcasses.

Mortality of copepods and other zooplankton is often assumed to be the result of predators.

Several studies have observed, however, that many dead copepods are found in samples of seawater. "This is more indicative of non-predatory mortality," says Elliott.

But traditional sampling often ignores the live/dead "status" of the copepods, Elliott says, and little is known about how many copepod carcasses are in fact floating around in the water.

Using a newly improved staining method to help distinguish between live and dead copepods in water samples from Chesapeake Bay, Elliott and Tang observed substantial numbers of intact copepod carcasses.

An average of 12 to 30 percent of the developmental stages of the abundant coastal copepod species Acartia tonsa were dead.

They found that these were likely the result of mortality for other reasons than predators.

"Using a relatively simple staining procedure to distinguish live from dead copepods, Elliott and Tang have been able to arrive at a more accurate picture of predation versus other sources of mortality for estuarine copepod populations," says David Garrison, program director in the National Science Foundation's (NSF) Division of Ocean Sciences, which funded the research.

The results were published today in the journal Marine Ecology Progress Series.

To better understand the fate of the copepod carcasses, they conducted a series of field and laboratory experiments to investigate where the copepod carcasses eventually ended up.

"We found that mixing in the water was enough to keep many carcasses in suspension in places like the shallows of Chesapeake Bay," says Elliott.

"Applying the results to the deeper open ocean, copepod carcasses become less dense as they decompose, such that they can reach neutral buoyancy and float around for some time before reaching the sea floor."

Much of the organic matter from copepods that die of non-predatory causes is recycled in sea water, he believes, rather than being directly transferred to the ocean-bottom as the remains of copepods sink.

The information on the fate of copepod carcasses was then used to estimate the rate at which copepods in Chesapeake Bay die from non-predatory causes.

Non-predatory copepod deaths accounted for more than ten percent of all mortality. The finding provides a more accurate view of how copepod abundance changes throughout the year.

"The presence of copepod carcasses in the marine environment indicates the importance of non-predatory mortality factors," says Elliott. "It represents a diversion of energy from the traditional food chain that supports fish, to one that fuels microbes.

"A better understanding of the factors causing non-predatory mortality will improve predictability of the amount of copepod prey available to fish."

That knowledge, in turn, may lead to new ways of looking at the abundance of fish in Chesapeake Bay--and beyond.

Media Contacts
Cheryl Dybas, NSF (703) 292-7734 cdybas@nsf.gov
The National Science Foundation (NSF) is an independent federal agency that supports fundamental research and education across all fields of science and engineering. In fiscal year (FY) 2010, its budget is about $6.9 billion. NSF funds reach all 50 states through grants to nearly 2,000 universities and institutions. Each year, NSF receives over 45,000 competitive requests for funding, and makes over 11,500 new funding awards. NSF also awards over $400 million in professional and service contracts yearly.

Cheryl Dybas | EurekAlert!
Further information:
http://www.nsf.gov

More articles from Ecology, The Environment and Conservation:

nachricht Scientists team up on study to save endangered African penguins
16.11.2017 | Florida Atlantic University

nachricht Climate change: Urban trees are growing faster worldwide
13.11.2017 | Technische Universität München

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

Im Focus: Wrinkles give heat a jolt in pillared graphene

Rice University researchers test 3-D carbon nanostructures' thermal transport abilities

Pillared graphene would transfer heat better if the theoretical material had a few asymmetric junctions that caused wrinkles, according to Rice University...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Antarctic landscape insights keep ice loss forecasts on the radar

20.11.2017 | Earth Sciences

Filling the gap: High-latitude volcanic eruptions also have global impact

20.11.2017 | Earth Sciences

Water world

20.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>