Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Data revealing migrations of larval reef fish vital for designing networks of marine protected areas

Networks of biologically-connected marine protected areas need to be carefully planned, taking into account the open ocean migrations of marine fish larvae that take them from one home to another sometimes hundreds of kilometers away.

Research published today in the international journal Oecologia sheds new light on the dispersal of marine fish in their larval stages, important information for the effective design of marine protected areas (MPAs), a widely advocated conservation tool.

Using a novel genetic analysis, researchers at the University of Windsor, Canada, and the United Nations University's Canadian-based Institute for Water, Environment and Health (UNU-INWEH) studied dispersal and connectivity among populations of the bicolor damselfish -- a species common to Caribbean coral reefs and a convenient proxy for many coral reef fish species with similar biology, including a typical 30-day larval stage.

Using samples of newly settled juvenile fish from sites in Belize and Mexico, they traced the origins of hundreds of individual fish larvae back to putative source populations.

"This is the first time that genetic 'assignment tests' have been used to delineate the pattern of connectivity for a marine fish in a region of this size (approximately 6,000 square kilometers)," says lead author Derek Hogan of the University of Windsor, now at University of Wisconsin.

"We found that larvae of this species, on average, traveled 77 km from home in the 30-day larval period," says Dr. Hogan. "Although some fish remained close to home in the same period, some traveled almost 200 km - roughly the distance from New York City to Albany - an impressive feat for a larva about the size of a baby fingernail."

The scientists were surprised to find that patterns of larval dispersal among reefs changed from year to year, driven perhaps by changes in oceanographic currents or meteorological events.

"These results show that it is possible to characterize the pattern of connectivity for selected species, with considerable detail" says co-author Prof. Daniel Heath of the University of Windsor.

"These studies are invaluable for understanding how to design networks of marine protected areas effectively," says Dr. Hogan. "The functioning, and therefore the success, of networks of MPAs designed for conserving species depends fundamentally on our deep understanding of larval migrations."

The authors caution that more work is needed to determine factors that cause larval dispersal to fluctuate from year to year.

"Our results reveal that developing a precise understanding of connectivity patterns is going to be more difficult than previously assumed, because they vary through time," says co-author Peter F. Sale, Assistant Director at UNU-INWEH.

"Long-term, we need to be building models that can simulate connectivity in ways that reproduce these year-to-year changes. Models that can do that will be broadly applicable and powerful management tools."

The study is part of the Coral Reef Targeted Research Project (CRTR), a World Bank and University of Queensland-led project funded by the Global Environment Facility. CRTR involves over 100 investigators from universities and research centers worldwide. Its Connectivity Working Group, led by Dr. Sale and managed by UNU-INWEH, focuses its research activity primarily in the western Caribbean.

These results add to the CRTR Project's impressive total of new science results on selected questions deemed key to improving management of coral reef systems worldwide.

Further more information:

The Connectivity Program:
The CRTR Project:
UNU-INWEH was established in 1996 to strengthen water management capacity, particularly of developing countries, and to provide on-the-ground project support. With core funding from the Government of Canada through CIDA, it is hosted by McMaster University, Hamilton, Canada.

The University of Windsor is an internationally-oriented, multi-disciplined institution that actively fosters an atmosphere of close cooperation between faculty and students, creating a unifying atmosphere of excellence across all of its faculties to encourage lifelong learning, teaching, research and discovery.

Terry Collins | EurekAlert!
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

nachricht Malaysia's unique freshwater mussels in danger
27.09.2016 | The University of Nottingham Malaysia Campus

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>