Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The dark side of kerosene lamps: High black carbon emissions

The small kerosene lamps that light millions of homes in developing countries have a dark side: black carbon – fine particles of soot released into the atmosphere.

New measurements show that kerosene wick lamps release 20 times more black carbon than previously thought, say researchers at the University of Illinois and the University of California, Berkeley. The group published its findings in the journal Environmental Science and Technology.

Black carbon is a hazard for human health and the environment, affecting air quality both indoors and out. It has a major impact on climate as it absorbs heat and sunlight, warming the air. Although it only lingers in the atmosphere for about two weeks, one kilogram of black carbon can cause as much warming in that short time as 700 kilograms of carbon dioxide circulating in the atmosphere for 100 years, according to study leader Tami Bond, a professor of civil and environmental engineering at the U. of I.

“There’s a lot of interest right now in reducing black carbon as a quick way to reduce climate warming – a way to reduce warming in the immediate future, although not a full solution to long-term climate change,” Bond said. “In its short lifetime of two weeks, it adds a lot of energy to the atmosphere. It’s immediate warming now, which is why people are talking about reducing it.”

Previously, emissions researchers did not consider kerosene lamps a large source of black carbon because of the relatively small amount of fuel used in a lamp verses other particle-emitting sources, such as cookstoves or diesel engines. However, the new measurements from the field show that 7 to 9 percent of fuel burned is converted to black carbon – a very high emission factor, making such lamps a major source of black carbon.

In addition, unlike the cocktail of aerosol particles released by cookstoves and cooking fires, the dark curls rising from a kerosene lamp are nearly pure black carbon.

The good news is that there are inexpensive, easy alternatives that could curb black carbon emissions from lamps. For example, LED lamps charged by solar panels are becoming more popular. But an even easier fix would be to place a glass shield around the lamp, which reduces – though does not eliminate – the amount of black carbon particles that escape.

“Unlike cooking stoves, which also are very important health hazards but challenging to replace, people actually like to replace the kerosene lamps,” Bond said. “When it comes to lamps, nobody says, ‘I really like this tin can that I filled with kerosene.’ It’s a plausible, inexpensive way to reduce climate warming immediately, which is something we haven’t really had in the black carbon field before.”

The study authors hope that, with the new data in hand, agencies working in developing countries will implement lamp-replacement initiatives to develop and distribute affordable alternatives.

"Getting rid of kerosene lamps may seem like a small, inconsequential step to take,” said study lead author Nicholas Lam, a UC Berkeley graduate student, “but when considering the collective impact of hundreds of millions of households, it's a simple move that affects the planet."

The Centers for Disease Control and Prevention, the National Institute of Environmental Health Sciences, the U.S. Agency for International Development and the Environmental Protection Agency supported this research.

Editor’s notes: To reach Tami Bond, call 217-244-5277; email The paper, “Household Light Makes Global Heat: High Black Carbon Emissions From Kerosene Wick Lamps,” is available online.

Liz Ahlberg | University of Illinois
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Blacklists Protect the Rainforest
24.09.2015 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht Small Alga – Great Effect
22.09.2015 | Leibniz-Zentrum für Marine Tropenökologie (ZMT)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Kick-off for a new era of precision astronomy

The MICADO camera, a first light instrument for the European Extremely Large Telescope (E-ELT), has entered a new phase in the project: by agreeing to a Memorandum of Understanding, the partners in Germany, France, the Netherlands, Austria, and Italy, have all confirmed their participation. Following this milestone, the project's transition into its preliminary design phase was approved at a kick-off meeting held in Vienna. Two weeks earlier, on September 18, the consortium and the European Southern Observatory (ESO), which is building the telescope, have signed the corresponding collaboration agreement.

As the first dedicated camera for the E-ELT, MICADO will equip the giant telescope with a capability for diffraction-limited imaging at near-infrared...

Im Focus: Locusts at the wheel: University of Graz investigates collision detector inspired by insect eyes

Self-driving cars will be on our streets in the foreseeable future. In Graz, research is currently dedicated to an innovative driver assistance system that takes over control if there is a danger of collision. It was nature that inspired Dr Manfred Hartbauer from the Institute of Zoology at the University of Graz: in dangerous traffic situations, migratory locusts react around ten times faster than humans. Working together with an interdisciplinary team, Hartbauer is investigating an affordable collision detector that is equipped with artificial locust eyes and can recognise potential crashes in time, during both day and night.

Inspired by insects

Im Focus: Physicists shrink particle accelerator

Prototype demonstrates feasibility of building terahertz accelerators

An interdisciplinary team of researchers has built the first prototype of a miniature particle accelerator that uses terahertz radiation instead of radio...

Im Focus: Simple detection of magnetic skyrmions

New physical effect: researchers discover a change of electrical resistance in magnetic whirls

At present, tiny magnetic whirls – so called skyrmions – are discussed as promising candidates for bits in future robust and compact data storage devices. At...

Im Focus: High-speed march through a layer of graphene

In cooperation with the Center for Nano-Optics of Georgia State University in Atlanta (USA), scientists of the Laboratory for Attosecond Physics of the Max Planck Institute of Quantum Optics and the Ludwig-Maximilians-Universität have made simulations of the processes that happen when a layer of carbon atoms is irradiated with strong laser light.

Electrons hit by strong laser pulses change their location on ultrashort timescales, i.e. within a couple of attoseconds (1 as = 10 to the minus 18 sec). In...

All Focus news of the innovation-report >>>



Event News

EHFG 2015: Securing healthcare and sustainably strengthening healthcare systems

01.10.2015 | Event News

Conference in Brussels: Tracking and Tracing the Smallest Marine Life Forms

30.09.2015 | Event News

World Alzheimer`s Day – Professor Willnow: Clearer Insights into the Development of the Disease

17.09.2015 | Event News

Latest News

New microscopy technology augments surgeon's view for greater accuracy

07.10.2015 | Medical Engineering

Discovery about new battery overturns decades of false assumptions

07.10.2015 | Power and Electrical Engineering

Ancient rocks record first evidence for photosynthesis that made oxygen

07.10.2015 | Earth Sciences

More VideoLinks >>>