Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The dark side of kerosene lamps: High black carbon emissions

11.12.2012
The small kerosene lamps that light millions of homes in developing countries have a dark side: black carbon – fine particles of soot released into the atmosphere.

New measurements show that kerosene wick lamps release 20 times more black carbon than previously thought, say researchers at the University of Illinois and the University of California, Berkeley. The group published its findings in the journal Environmental Science and Technology.

Black carbon is a hazard for human health and the environment, affecting air quality both indoors and out. It has a major impact on climate as it absorbs heat and sunlight, warming the air. Although it only lingers in the atmosphere for about two weeks, one kilogram of black carbon can cause as much warming in that short time as 700 kilograms of carbon dioxide circulating in the atmosphere for 100 years, according to study leader Tami Bond, a professor of civil and environmental engineering at the U. of I.

“There’s a lot of interest right now in reducing black carbon as a quick way to reduce climate warming – a way to reduce warming in the immediate future, although not a full solution to long-term climate change,” Bond said. “In its short lifetime of two weeks, it adds a lot of energy to the atmosphere. It’s immediate warming now, which is why people are talking about reducing it.”

Previously, emissions researchers did not consider kerosene lamps a large source of black carbon because of the relatively small amount of fuel used in a lamp verses other particle-emitting sources, such as cookstoves or diesel engines. However, the new measurements from the field show that 7 to 9 percent of fuel burned is converted to black carbon – a very high emission factor, making such lamps a major source of black carbon.

In addition, unlike the cocktail of aerosol particles released by cookstoves and cooking fires, the dark curls rising from a kerosene lamp are nearly pure black carbon.

The good news is that there are inexpensive, easy alternatives that could curb black carbon emissions from lamps. For example, LED lamps charged by solar panels are becoming more popular. But an even easier fix would be to place a glass shield around the lamp, which reduces – though does not eliminate – the amount of black carbon particles that escape.

“Unlike cooking stoves, which also are very important health hazards but challenging to replace, people actually like to replace the kerosene lamps,” Bond said. “When it comes to lamps, nobody says, ‘I really like this tin can that I filled with kerosene.’ It’s a plausible, inexpensive way to reduce climate warming immediately, which is something we haven’t really had in the black carbon field before.”

The study authors hope that, with the new data in hand, agencies working in developing countries will implement lamp-replacement initiatives to develop and distribute affordable alternatives.

"Getting rid of kerosene lamps may seem like a small, inconsequential step to take,” said study lead author Nicholas Lam, a UC Berkeley graduate student, “but when considering the collective impact of hundreds of millions of households, it's a simple move that affects the planet."

The Centers for Disease Control and Prevention, the National Institute of Environmental Health Sciences, the U.S. Agency for International Development and the Environmental Protection Agency supported this research.

Editor’s notes: To reach Tami Bond, call 217-244-5277; email yark@illinois.edu. The paper, “Household Light Makes Global Heat: High Black Carbon Emissions From Kerosene Wick Lamps,” is available online.

Liz Ahlberg | University of Illinois
Further information:
http://www.illinois.edu

More articles from Ecology, The Environment and Conservation:

nachricht Treating ships’ ballast water: filtration preferable to disinfection
30.07.2015 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Are Fish Getting High on Cocaine?
28.07.2015 | McGill University

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Intracellular microlasers could allow precise labeling of a trillion individual cells

30.07.2015 | Life Sciences

Real-time imaging of lung lesions during surgery helps localize tumors and improve precision

30.07.2015 | Health and Medicine

New study exposes negative effects of climate change on Antarctic fish

30.07.2015 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>