Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dams provide resilience to Columbia from climate change impacts

26.09.2013
Dams have been vilified for detrimental effects to water quality and fish passage, but a new study suggests that these structures provide “ecological and engineering resilience” to climate change in the Columbia River basin.

The study, which was published in the Canadian journal Atmosphere-Ocean, looked at the effects of climate warming on stream flow in the headwaters and downstream reaches of seven sub-basins of the Columbia River from 1950 to 2010.

The researchers found that the peak of the annual snowmelt runoff has shifted to a few days earlier, but the downstream impacts were negligible because reservoir management counteracts these effects.

“The dams are doing what they are supposed to do, which is to use engineering – and management – to buffer us from climate variability and climate warming,” said Julia Jones, an Oregon State University hydrologist and co-author on the study. “The climate change signals that people have expected in stream flow haven’t been evident in the Columbia River basin because of the dams and reservoir management. That may not be the case elsewhere, however.”

The study is one of several published in a special edition of the journal, which examines the iconic river as the United States and Canada begin a formal 10-year review of the Columbia River water management treaty in 2014. The treaty expires in 2024.

Jones said the net effect of reservoir management is to reduce amplitude of water flow variance by containing water upstream during peak flows for flood control, or augmenting low flows in late summer. While authorized primarily for flood control, reservoir management also considers water release strategies for fish migration, hydropower, ship navigation and recreation.

These social forces, as well as climate change impacts, have the potential to create more variability in river flow, but the decades-long hydrograph chart of the Columbia River is stable because of the dams, said Jones, who is on the faculty of the College of Earth, Ocean, and Atmospheric Sciences at OSU.

“The climate change signal on stream flow that we would expect to see is apparent in the headwaters,” she said, “but not downstream. Historically, flow management in the Columbia River basin has focused on the timing of water flows and so far, despite debates about reservoir management, water scarcity has not been as prominent an issue in the Columbia basin as it has elsewhere, such as the Klamath basin.”

The study, which was funded by the National Science Foundation’s support to the H.J. Andrews Experimental Forest, looked at seven sub-basins of the Columbia River, as well as the main stem of the Columbia. These river systems included the Bruneau, Entiat, Snake, Pend Oreille, Priest, Salmon and Willamette rivers.

“One of the advantages of having a long-term research programs like H.J. Andrews is that you have detailed measurements over long periods of time that can tell you a lot about how climate is changing,” Jones pointed out. “In the case of the Columbia River – especially downstream – the impacts haven’t been as daunting as some people initially feared because of the engineering component.

“Will that be the case in the future?” she added. “It’s possible, but hard to predict. Whether we see a strong climate change signal producing water shortages in the Columbia River will depend on the interplay of social forces and climate change over the next several decades.”

Also co-author on the study is Kendra Hatcher, a graduate student in the College of Earth, Ocean, and Atmospheric Sciences, who studied under Jones.

About the OSU College of Earth, Ocean, and Atmospheric Sciences: CEOAS is internationally recognized for its faculty, research and facilities, including state-of-the-art computing infrastructure to support real-time ocean/atmosphere observation and prediction. The college is a leader in the study of the Earth as an integrated system, providing scientific understanding to address complex environmental challenges

MEDIA CONTACT:
Mark Floyd,
541-737-0788
SOURCE:
Julia Jones, 541-737-1224; jones@geo.oregonstate.edu

Julia Jones | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists on the road to discovering impact of urban road dust
18.01.2018 | University of Alberta

nachricht Gran Chaco: Biodiversity at High Risk
17.01.2018 | Humboldt-Universität zu Berlin

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Thanks for the memory: NIST takes a deep look at memristors

22.01.2018 | Materials Sciences

Radioactivity from oil and gas wastewater persists in Pennsylvania stream sediments

22.01.2018 | Earth Sciences

Saarland University bioinformaticians compute gene sequences inherited from each parent

22.01.2018 | Life Sciences

VideoLinks Wissenschaft & Forschung
Overview of more VideoLinks >>>