Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Dams provide resilience to Columbia from climate change impacts

26.09.2013
Dams have been vilified for detrimental effects to water quality and fish passage, but a new study suggests that these structures provide “ecological and engineering resilience” to climate change in the Columbia River basin.

The study, which was published in the Canadian journal Atmosphere-Ocean, looked at the effects of climate warming on stream flow in the headwaters and downstream reaches of seven sub-basins of the Columbia River from 1950 to 2010.

The researchers found that the peak of the annual snowmelt runoff has shifted to a few days earlier, but the downstream impacts were negligible because reservoir management counteracts these effects.

“The dams are doing what they are supposed to do, which is to use engineering – and management – to buffer us from climate variability and climate warming,” said Julia Jones, an Oregon State University hydrologist and co-author on the study. “The climate change signals that people have expected in stream flow haven’t been evident in the Columbia River basin because of the dams and reservoir management. That may not be the case elsewhere, however.”

The study is one of several published in a special edition of the journal, which examines the iconic river as the United States and Canada begin a formal 10-year review of the Columbia River water management treaty in 2014. The treaty expires in 2024.

Jones said the net effect of reservoir management is to reduce amplitude of water flow variance by containing water upstream during peak flows for flood control, or augmenting low flows in late summer. While authorized primarily for flood control, reservoir management also considers water release strategies for fish migration, hydropower, ship navigation and recreation.

These social forces, as well as climate change impacts, have the potential to create more variability in river flow, but the decades-long hydrograph chart of the Columbia River is stable because of the dams, said Jones, who is on the faculty of the College of Earth, Ocean, and Atmospheric Sciences at OSU.

“The climate change signal on stream flow that we would expect to see is apparent in the headwaters,” she said, “but not downstream. Historically, flow management in the Columbia River basin has focused on the timing of water flows and so far, despite debates about reservoir management, water scarcity has not been as prominent an issue in the Columbia basin as it has elsewhere, such as the Klamath basin.”

The study, which was funded by the National Science Foundation’s support to the H.J. Andrews Experimental Forest, looked at seven sub-basins of the Columbia River, as well as the main stem of the Columbia. These river systems included the Bruneau, Entiat, Snake, Pend Oreille, Priest, Salmon and Willamette rivers.

“One of the advantages of having a long-term research programs like H.J. Andrews is that you have detailed measurements over long periods of time that can tell you a lot about how climate is changing,” Jones pointed out. “In the case of the Columbia River – especially downstream – the impacts haven’t been as daunting as some people initially feared because of the engineering component.

“Will that be the case in the future?” she added. “It’s possible, but hard to predict. Whether we see a strong climate change signal producing water shortages in the Columbia River will depend on the interplay of social forces and climate change over the next several decades.”

Also co-author on the study is Kendra Hatcher, a graduate student in the College of Earth, Ocean, and Atmospheric Sciences, who studied under Jones.

About the OSU College of Earth, Ocean, and Atmospheric Sciences: CEOAS is internationally recognized for its faculty, research and facilities, including state-of-the-art computing infrastructure to support real-time ocean/atmosphere observation and prediction. The college is a leader in the study of the Earth as an integrated system, providing scientific understanding to address complex environmental challenges

MEDIA CONTACT:
Mark Floyd,
541-737-0788
SOURCE:
Julia Jones, 541-737-1224; jones@geo.oregonstate.edu

Julia Jones | EurekAlert!
Further information:
http://www.oregonstate.edu

More articles from Ecology, The Environment and Conservation:

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

nachricht A new indicator for marine ecosystem changes: the diatom/dinoflagellate index
21.08.2017 | Leibniz-Institut für Ostseeforschung Warnemünde

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>