Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


After dam removal, sediment muddies the water

The largest dam-removal project in history has increased river water cloudiness caused by suspended particles, a process that could affect aquatic life.

The dismantling of two large dams on the Elwha River in Washington began in September of last year and has significantly increased this river cloudiness, known as turbidity, even though most of the sediment trapped behind the dams has yet to erode into the river.

"The construction of dams can cause major disruptions to natural processes on riverways, and we can expect their removal to also have anomalous effects for some time until rivers regain their equilibrium," said U.S. Geological Survey Director Marcia McNutt. "What we are learning from the response of the Elwha River ecology to increased sedimentation during dam removal will help guide other large dam removal and river restoration projects in the future."

The U.S. Geological Survey authors examined sediment and water-flow data from the first six months of dam removal and found that dam-removal activities and natural processes both affected the river's turbidity. Breaching of several temporary earthen dams built to assist with deconstruction caused sustained increases in downstream turbidity. High river flows associated with rainfall also increased turbidity, at measuring stations both above and below the dams.

"During the first six months of dam removal, most of the sediment released was silt and clay, which caused substantial-but not unexpected-turbidity in the river and coastal waters. As dam removal progresses we expect more and more sand and gravel to be released into the river, which will likely help build river bars and slow coastal erosion near the Elwha River mouth," said Jonathan Warrick, lead author of the report and research geologist for the USGS. "Although the river has been quite turbid since dam removal began, most of the sediment-transport action is yet to come."

This first published report on sediment response to the Department of Interior's Elwha River Restoration Project, is published today in Eos, the weekly newspaper of the American Geophysical Union.

High turbidity levels can reduce the amount of light penetrating river and coastal waters, which can inhibit aquatic plant growth and affect wildlife that rely on sight to find food and avoid predators.

Removal of the dams is exposing more than 24 million cubic yards of sediment stored in the reservoirs, enough to fill the Seattle Seahawks' football stadium eight times. Using a combination of measurements from a station downstream of the dams, the authors estimated that less than 1 percent of the 24 million cubic yards of sediment stored behind the dams had eroded and moved downstream.

Thus, the authors conclude that completion of dam removal in 2012- 2013 will expose much more sediment to erosion, resulting in continued turbidity downstream as well as changes in the shape and sedimentary makeup of the riverbed and the coastal landforms around the mouth of the river into the Strait of Juan de Fuca, which is only 5 miles below Elwha Dam.

"Tracking these changes will be important to assessing their effects on habitat for fish and other wildlife in what historically was one of the most productive salmon rivers in Puget Sound," Warrick said. Scientists expect dam removal to cause short-term adverse effects on aquatic life, followed by large-scale ecosystem resurgence once the river's sediment load returns to a more normal and natural state.

Dam decommissioning has become an important means for removing unsafe or obsolete dams and for restoring rivers to a more natural state. Two dams are being removed incrementally during this 2-year project: the 105-foot-high Elwha Dam impounding Lake Aldwell and the 210-foot- high Glines Canyon Dam impounding Lake Mills.

Only part of the total sediment stored behind the dams-9 to 10 million cubic yards-is expected to erode into the river and move downstream to coastal areas. The methods and schedule of dam deconstruction are largely governed by management of this sediment, with controlled drawdowns of the reservoir levels to prevent deleterious impacts of an abrupt release.

More information on the Elwha River Restoration can be found on web pages hosted by the USGS and the National Park Service. This research and monitoring was funded by both the USGS and the U.S. EPA.

"River turbidity and sediment loads during dam removal"
Jonathan A. Warrick: Pacific Coastal and Marine Science Center, U.S. Geological Survey, Santa

Cruz, California;

Jeffrey J. Duda: Western Fisheries Research Center, U.S. Geological Survey, Seattle,


Christopher S. Magirl and Chris A. Curran, Washington Water Science Center, U.S. Geological

Survey, Tacoma, Washington

Contact information for the authors:
Jon Warrick: Telephone: (831) 460-7569; Email:
AGU Contact:
Kate Ramsayer
+1 (202) 777-7524
USGS Contact:
Paul Laustsen
+1 (650) 454-7264

Kate Ramsayer | American Geophysical Union
Further information:

More articles from Ecology, The Environment and Conservation:

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

nachricht Removing fossil fuel subsidies will not reduce CO2 emissions as much as hoped
08.02.2018 | International Institute for Applied Systems Analysis (IIASA)

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

Im Focus: Surveying the Arctic: Tracking down carbon particles

Researchers embark on aerial campaign over Northeast Greenland

On 15 March, the AWI research aeroplane Polar 5 will depart for Greenland. Concentrating on the furthest northeast region of the island, an international team...

Im Focus: Unique Insights into the Antarctic Ice Shelf System

Data collected on ocean-ice interactions in the little-researched regions of the far south

The world’s second-largest ice shelf was the destination for a Polarstern expedition that ended in Punta Arenas, Chile on 14th March 2018. Oceanographers from...

Im Focus: ILA 2018: Laser alternative to hexavalent chromium coating

At the 2018 ILA Berlin Air Show from April 25–29, the Fraunhofer Institute for Laser Technology ILT is showcasing extreme high-speed Laser Material Deposition (EHLA): A video documents how for metal components that are highly loaded, EHLA has already proved itself as an alternative to hard chrome plating, which is now allowed only under special conditions.

When the EU restricted the use of hexavalent chromium compounds to special applications requiring authorization, the move prompted a rethink in the surface...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

TIB’s Visual Analytics Research Group to develop methods for person detection and visualisation

19.03.2018 | Information Technology

Tiny implants for cells are functional in vivo

19.03.2018 | Interdisciplinary Research

Science & Research
Overview of more VideoLinks >>>