Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

After dam removal, sediment muddies the water

24.10.2012
The largest dam-removal project in history has increased river water cloudiness caused by suspended particles, a process that could affect aquatic life.

The dismantling of two large dams on the Elwha River in Washington began in September of last year and has significantly increased this river cloudiness, known as turbidity, even though most of the sediment trapped behind the dams has yet to erode into the river.

"The construction of dams can cause major disruptions to natural processes on riverways, and we can expect their removal to also have anomalous effects for some time until rivers regain their equilibrium," said U.S. Geological Survey Director Marcia McNutt. "What we are learning from the response of the Elwha River ecology to increased sedimentation during dam removal will help guide other large dam removal and river restoration projects in the future."

The U.S. Geological Survey authors examined sediment and water-flow data from the first six months of dam removal and found that dam-removal activities and natural processes both affected the river's turbidity. Breaching of several temporary earthen dams built to assist with deconstruction caused sustained increases in downstream turbidity. High river flows associated with rainfall also increased turbidity, at measuring stations both above and below the dams.

"During the first six months of dam removal, most of the sediment released was silt and clay, which caused substantial-but not unexpected-turbidity in the river and coastal waters. As dam removal progresses we expect more and more sand and gravel to be released into the river, which will likely help build river bars and slow coastal erosion near the Elwha River mouth," said Jonathan Warrick, lead author of the report and research geologist for the USGS. "Although the river has been quite turbid since dam removal began, most of the sediment-transport action is yet to come."

This first published report on sediment response to the Department of Interior's Elwha River Restoration Project, is published today in Eos, the weekly newspaper of the American Geophysical Union.

High turbidity levels can reduce the amount of light penetrating river and coastal waters, which can inhibit aquatic plant growth and affect wildlife that rely on sight to find food and avoid predators.

Removal of the dams is exposing more than 24 million cubic yards of sediment stored in the reservoirs, enough to fill the Seattle Seahawks' football stadium eight times. Using a combination of measurements from a station downstream of the dams, the authors estimated that less than 1 percent of the 24 million cubic yards of sediment stored behind the dams had eroded and moved downstream.

Thus, the authors conclude that completion of dam removal in 2012- 2013 will expose much more sediment to erosion, resulting in continued turbidity downstream as well as changes in the shape and sedimentary makeup of the riverbed and the coastal landforms around the mouth of the river into the Strait of Juan de Fuca, which is only 5 miles below Elwha Dam.

"Tracking these changes will be important to assessing their effects on habitat for fish and other wildlife in what historically was one of the most productive salmon rivers in Puget Sound," Warrick said. Scientists expect dam removal to cause short-term adverse effects on aquatic life, followed by large-scale ecosystem resurgence once the river's sediment load returns to a more normal and natural state.

Dam decommissioning has become an important means for removing unsafe or obsolete dams and for restoring rivers to a more natural state. Two dams are being removed incrementally during this 2-year project: the 105-foot-high Elwha Dam impounding Lake Aldwell and the 210-foot- high Glines Canyon Dam impounding Lake Mills.

Only part of the total sediment stored behind the dams-9 to 10 million cubic yards-is expected to erode into the river and move downstream to coastal areas. The methods and schedule of dam deconstruction are largely governed by management of this sediment, with controlled drawdowns of the reservoir levels to prevent deleterious impacts of an abrupt release.

More information on the Elwha River Restoration can be found on web pages hosted by the USGS and the National Park Service. This research and monitoring was funded by both the USGS and the U.S. EPA.

Title:
"River turbidity and sediment loads during dam removal"
Authors:
Jonathan A. Warrick: Pacific Coastal and Marine Science Center, U.S. Geological Survey, Santa

Cruz, California;

Jeffrey J. Duda: Western Fisheries Research Center, U.S. Geological Survey, Seattle,

Washington;

Christopher S. Magirl and Chris A. Curran, Washington Water Science Center, U.S. Geological

Survey, Tacoma, Washington

Contact information for the authors:
Jon Warrick: Telephone: (831) 460-7569; Email: jwarrick@usgs.gov
AGU Contact:
Kate Ramsayer
+1 (202) 777-7524
kramsayer@agu.org
USGS Contact:
Paul Laustsen
+1 (650) 454-7264
plaustsen@usgs.gov

Kate Ramsayer | American Geophysical Union
Further information:
http://www.agu.org

More articles from Ecology, The Environment and Conservation:

nachricht International network connects experimental research in European waters
21.03.2017 | Leibniz-Institut für Gewässerökologie und Binnenfischerei (IGB)

nachricht World Water Day 2017: It doesn’t Always Have to Be Drinking Water – Using Wastewater as a Resource
17.03.2017 | ISOE - Institut für sozial-ökologische Forschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Pulverizing electronic waste is green, clean -- and cold

22.03.2017 | Materials Sciences

Astronomers hazard a ride in a 'drifting carousel' to understand pulsating stars

22.03.2017 | Physics and Astronomy

New gel-like coating beefs up the performance of lithium-sulfur batteries

22.03.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>