Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

How Dairy Farms Contribute to Greenhouse Gas Emissions

20.07.2011
U.S. Department of Agriculture (USDA) scientists have produced the first detailed data on how large-scale dairy facilities contribute to the emission of greenhouse gases.

This research was conducted by Agricultural Research Service (ARS) scientists at the ARS Northwest Irrigation and Soils Research Laboratory in Kimberly, Idaho.

ARS is USDA's principal intramural scientific research agency, and these studies support the USDA priority of responding to climate change.

ARS soil scientist April Leytem led the year-long project, which involved monitoring the emissions of ammonia, carbon dioxide, methane and nitrous oxide from a commercial dairy with 10,000 milk cows in southern Idaho. The facility had 20 open-lot pens, two milking parlors, a hospital barn, a maternity barn, a manure solid separator, a 25-acre wastewater storage pond and a 25-acre compost yard.

Concentration data was collected continuously for two to three days each month, along with air temperature, barometric pressure, wind direction and wind speed. After this data was collected, Leytem's team calculated the average daily emissions for each source area for each month.

The results indicated that, on average, the facility generated 3,575 pounds of ammonia, 33,092 pounds of methane and 409 pounds of nitrous oxide every day. The open lot areas generated 78 percent of the facility's ammonia, 57 percent of its nitrous oxide and 74 percent of the facility's methane emissions during the spring.

In general, the emission of ammonia and nitrous oxide from the open lots were lower during the late evening and early morning, and then increased throughout the day to peak late in the day. These daily fluctuations paralleled patterns in wind speed, air temperature and livestock activity, all of which generally increased during the day. Emissions of ammonia and methane from the wastewater pond and the compost were also lower in the late evening and early morning and increased during the day.

Results from the study were published in the Journal of Environmental Quality.

Read more about this work in the July 2011 issue of Agricultural Research magazine.

Ann Perry | EurekAlert!
Further information:
http://www.ars.usda.gov

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>