Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cyber exploring the 'ecosystems' of influenzas

06.08.2009
Predicting the infection patterns of influenzas requires tracking both the ecology and the evolution of the fast-morphing viruses that cause them, said a Duke University researcher who enlists computers to model such changes.

A single mutation can put a flu virus on a new-enough path to re-infect people who had developed immunity to its previous form, said Katia Koelle, a Duke assistant professor of biology.

For example, a commonplace Influenza A virus known as H3N2 emerged in 1968. But since then fully one-third of the component amino acids in its hemagglutinin protein -- the "H" in H3N2 -- have changed.

"That's a huge amount of evolution," Koelle said. "If there's a new escape mutant that can actually so change the protein's configuration that our antibodies can't recognize the virus anymore, that means it's going to have a huge advantage and infect more of us.

"How much of an advantage the new virus strain has will depend on how many people have gotten infected in the past. So the epidemiological dynamics will shape the evolutionary dynamics. And vice versa, the evolutionary dynamics will shape the epidemiological dynamics because mutations of the virus will allow people to become re-infected."

Koelle's group at Duke has developed a two-tiered model to simulate that interplay in such viruses, allowing scientists to "quantitatively reproduce the patterns we observe," she said.

Koelle is scheduled to describe her work at 10:25 a.m. Wednesday, Aug. 5, during a symposium (http://eco.confex.com/eco/2009/techprogram/S4132.HTM) at the 2009 Ecological Society of America annual meeting in Albuquerque.

"We're interested in having a flexible and simple model that would not only be able to reproduce the dynamics of H3N2 but also help us understand how flu evolves differently in different hosts," Koelle added. For example, H3N2 (not to be confused with the H1N1 "swine flu" virus) also has been circulating in pigs, with the virus showing distinctly different evolutionary patterns in these hosts.

One of her group's models is focusing on that difference, which she suspects is linked to man's and animals widely disparate lifespans -- about 80 years for humans versus under 2 for farm-raised hogs.

"The virus doesn't have to evolve rapidly to avoid being wiped out by the pigs' immunity to it," she said. "That's because there are always many more susceptible new hosts coming into the pig population."

Another challenge is Influenza B, a comparatively mild virus that infects mostly children but is complicated by the fact that two genetically distinct strain lineages circulate in human populations. During any given flu season, only one B sequence predominates, presenting a challenge for vaccine makers who must choose between them.

"They have to make an educated guess about which influenza B lineage is going to be the main one that season," Koelle said. "Sometimes there is a big B outbreak when it turns out to be the one not included in the vaccine."

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>