Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cyber exploring the 'ecosystems' of influenzas

06.08.2009
Predicting the infection patterns of influenzas requires tracking both the ecology and the evolution of the fast-morphing viruses that cause them, said a Duke University researcher who enlists computers to model such changes.

A single mutation can put a flu virus on a new-enough path to re-infect people who had developed immunity to its previous form, said Katia Koelle, a Duke assistant professor of biology.

For example, a commonplace Influenza A virus known as H3N2 emerged in 1968. But since then fully one-third of the component amino acids in its hemagglutinin protein -- the "H" in H3N2 -- have changed.

"That's a huge amount of evolution," Koelle said. "If there's a new escape mutant that can actually so change the protein's configuration that our antibodies can't recognize the virus anymore, that means it's going to have a huge advantage and infect more of us.

"How much of an advantage the new virus strain has will depend on how many people have gotten infected in the past. So the epidemiological dynamics will shape the evolutionary dynamics. And vice versa, the evolutionary dynamics will shape the epidemiological dynamics because mutations of the virus will allow people to become re-infected."

Koelle's group at Duke has developed a two-tiered model to simulate that interplay in such viruses, allowing scientists to "quantitatively reproduce the patterns we observe," she said.

Koelle is scheduled to describe her work at 10:25 a.m. Wednesday, Aug. 5, during a symposium (http://eco.confex.com/eco/2009/techprogram/S4132.HTM) at the 2009 Ecological Society of America annual meeting in Albuquerque.

"We're interested in having a flexible and simple model that would not only be able to reproduce the dynamics of H3N2 but also help us understand how flu evolves differently in different hosts," Koelle added. For example, H3N2 (not to be confused with the H1N1 "swine flu" virus) also has been circulating in pigs, with the virus showing distinctly different evolutionary patterns in these hosts.

One of her group's models is focusing on that difference, which she suspects is linked to man's and animals widely disparate lifespans -- about 80 years for humans versus under 2 for farm-raised hogs.

"The virus doesn't have to evolve rapidly to avoid being wiped out by the pigs' immunity to it," she said. "That's because there are always many more susceptible new hosts coming into the pig population."

Another challenge is Influenza B, a comparatively mild virus that infects mostly children but is complicated by the fact that two genetically distinct strain lineages circulate in human populations. During any given flu season, only one B sequence predominates, presenting a challenge for vaccine makers who must choose between them.

"They have to make an educated guess about which influenza B lineage is going to be the main one that season," Koelle said. "Sometimes there is a big B outbreak when it turns out to be the one not included in the vaccine."

Monte Basgall | EurekAlert!
Further information:
http://www.duke.edu

More articles from Ecology, The Environment and Conservation:

nachricht Bioinvasion on the rise
15.02.2017 | Universität Konstanz

nachricht Litter Levels in the Depths of the Arctic are On the Rise
10.02.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>