Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Current mass extinction spurs major study of which plants to save

22.10.2008
The Earth is in the midst of the sixth mass extinction of both plants and animals, with nearly 50 percent of all species disappearing, scientists say.

Because of the current crisis, biologists at UC Santa Barbara are working day and night to determine which species must be saved. Their international study of grassland ecosystems, with flowering plants, is published this week in the Proceedings of the National Academy of Sciences.

"The current extinction event is due to human activity, paving the planet, creating pollution, many of the things that we are doing today," said co-author Bradley J. Cardinale, assistant professor of ecology, evolution and marine biology (EEMB) at UC Santa Barbara. "The Earth might well lose half of its species in our lifetime. We want to know which ones deserve the highest priority for conservation."

He explained that the last mass extinction near the current level was 65 million years ago, called the Cretaceous Tertiary extinction event, and was probably the result of a meteor hitting the Earth. It is best known for the extinction of non-avian dinosaurs, but massive amounts of plant species became extinct at that time as well.

According to the current study, the most genetically unique species are the ones that have the greatest importance in an ecosystem. These are the ones that the scientists recommend be listed as top priority for conservation.

"Given that we are losing species from ecosystems around the world, we need to know which species matter the most –– and which we should pour our resources into protecting," said first author Marc W. Cadotte, postdoctoral fellow at UCSB's National Center for Ecological Analysis and Synthesis (NCEAS).

Cadotte, Cardinale, and co-author Todd Oakley, an EEMB associate professor, put together a "meta-analysis" of approximately 40 important studies of grassland ecosystems around the world. They reconstructed the evolutionary history among 177 flowering plants used in these studies by comparing the genetic makeup of the plants.

The scientists found that some species are more critical than others in preserving the functions of ecosystems and that these species tend to be those that are genetically unique. Therefore, they are looking to evolutionary history for guidance in conservation efforts and in understanding the potential impacts of species loss.

Recent studies show that ecological systems with fewer species generally produce less biomass than those with more species. Less plant biomass means that less carbon dioxide is absorbed from the atmosphere and less oxygen is produced. So, as the biomass of plants plummets around the globe, the composition of gasses in the atmosphere that support life could be profoundly affected. Additionally, there are fewer plants for herbivorous animals to eat. Entire food chains can be disrupted, which can impact the production of crops and fisheries.

The loss of species that are not closely related to other species in the ecosystem reduces productivity more than the loss of species with close relatives. And the more genetically distinct a species is, the more impact it has on the amount of biomass in an ecosystem.

"Losing a very unique species may be worse than losing one with a close relative in the community," said Oakley. "The more evolutionary history that is represented in a plant community, the more productive it is."

Cadotte explained that the buttercup is a very unique species, evolutionarily. Losing the buttercup, where it occurs in grasslands, would have a much bigger impact on the system than losing a daisy or a sunflower, for example. The latter species are closely related. Each could therefore help fill the niche of the other, if one were to be lost. The daisy and sunflower also have a more similar genetic make-up.

"These 40 studies are showing the same thing for all plants around the world," said Cardinale. "It is not a willy-nilly conclusion. This study is very robust. It includes studies of plants that are found throughout the U.S., Europe, and Asia. We can have a high degree of confidence in the results. And the results show that genetic diversity predicts whether or not species matter."

Gail Gallessich | EurekAlert!
Further information:
http://www.ia.ucsb.edu

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NASA's AIM observes early noctilucent ice clouds over Antarctica

05.12.2016 | Earth Sciences

Shape matters when light meets atom

05.12.2016 | Physics and Astronomy

Researchers uncover protein-based “cancer signature”

05.12.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>