Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

CU-led study shows pine beetle outbreak buffers watersheds from nitrate pollution

15.01.2013
A research team involving several scientists from the University of Colorado Boulder has found an unexpected silver lining in the devastating pine beetle outbreaks ravaging the West: Such events do not harm water quality in adjacent streams as scientists had previously believed.

According to CU-Boulder team member Professor William Lewis, the new study shows that smaller trees and other vegetation that survive pine beetle invasions along waterways increase their uptake of nitrate, a common disturbance-related pollutant. While logging or damaging storms can drive stream nitrate concentrations up by 400 percent for multiple years, the team found no significant increase in the nitrate concentrations following extensive pine beetle tree mortality in a number of Colorado study areas.

"We found that the beetles do not disturb watersheds in the same way as logging and severe storms," said Lewis, interim director of CU's Cooperative Institute for Research in Environmental Sciences. "They leave behind smaller trees and other understory vegetation, which compensate for the loss of larger pine trees by taking up additional nitrate from the system. Beetle-kill conditions are a good benchmark for the protection of sub-canopy vegetation to preserve water quality during forest management activities."

A paper on the subject was published in the Jan. 14 issue of the Proceedings of the National Academy of Sciences.

"The U.S. Forest Service and other agencies have established harvesting practices that greatly mitigate damage to forests caused by logging, and they deserve credit for that," said Lewis. "But this study shows just how important the survival of smaller trees and understory vegetation can be to stream water quality."

In waterways adjacent to healthy pine forests, concentrations of nitrate is generally far lower than in rivers on the plains in the West like the South Platte, said Lewis. Nitrate pollution is caused by agricultural runoff from populated areas and by permitted discharges of treated effluent from water treatment facilities.

"In Colorado, many watersheds have lost 80 to 90 percent of their tree canopy as a result of the beetle epidemic," said Lewis, also a faculty member in CU-Boulder's ecology and evolutionary biology department. "We began to wonder whether the loss of the trees was reducing water quality in the streams. We knew that forestry and water managers were expecting big changes in water quality as a result of the pine beetle outbreak, so we decided to pool our university and federal agency resources in order to come up with an answer."

Study co-author and CU-Boulder Research Associate James McCutchan of CIRES said the new results should help forest managers develop more effective ways to harvest timber while having the smallest effect possible on downstream ecosystems. "This study shows that at least in some areas, it is possible to remove a large part of the tree biomass from a watershed with a very minimal effect on the stream ecosystem," he said.

Understory vegetation left intact after beetle outbreaks gains an ecological advantage in terms of survival and growth, since small trees no longer have to compete with large trees and have more access to light, water and nutrients, said McCutchan. Research by study co-author and former CU undergraduate Rachel Ertz showed concentrations of nitrate in the needles of small pines that survived beetle infestations were higher than those in healthy trees outside beetle-killed areas, another indication of how understory vegetation compensates for environmental conditions in beetle kill areas.

The researchers used computer modeling to show that in western forests, such a "compensatory response" provides potent water quality protection against the adverse effects of nitrates only if roughly half of the vegetation survives "overstory" mortality from beetle kill events, which is what occurs normally in such areas, said Lewis.

Other study co-authors included Leigh Cooper, Thomas Detmer and Thomas Veblen from CU-Boulder, John Stednick from Colorado State University, Charles Rhoades from the U.S. Forest Service, Jennifer Briggs and David Clow from the U.S. Geological Survey and Gene Likens of the Cary Institute of Ecosystem Studies in Millbrook, N.Y.

The severe pine beetle epidemic in Colorado and Wyoming forests is part of an unprecedented beetle outbreak that ranges from Mexico to Canada. A November 2012 study by CU-Boulder doctoral student Teresa Chapman showed the 2001-02 drought greatly accelerated the development of the mountain pine beetle epidemic.

The researchers measured stream nitrate concentrations at more than 100 sites in western Colorado containing lodgepole pines with a range of beetle-induced tree damage. The study area included measurements from the Fraser Experimental Forest near Granby, Colo., a 23,000-acre study area established by the USFS in 1937.

The new study was funded by the USFS, the USGS, the National Science Foundation, the National Oceanic and Atmospheric Administration and the National Park Service. CIRES is a joint research institute between CU-Boulder and NOAA.

Contact:

William Lewis, 303-492-6378
lewis@spot.colorado.edu
James McCutchan, 303-492-5192
James.McCutchan@colorado.edu
Jim Scott, CU-Boulder media relations, 303-492-3114
Jim.Scott@colorado.edu

William Lewis | EurekAlert!
Further information:
http://www.colorado.edu

More articles from Ecology, The Environment and Conservation:

nachricht Scientists produce a new roadmap for guiding development & conservation in the Amazon
09.12.2016 | Wildlife Conservation Society

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Electron highway inside crystal

Physicists of the University of Würzburg have made an astonishing discovery in a specific type of topological insulators. The effect is due to the structure of the materials used. The researchers have now published their work in the journal Science.

Topological insulators are currently the hot topic in physics according to the newspaper Neue Zürcher Zeitung. Only a few weeks ago, their importance was...

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Researchers identify potentially druggable mutant p53 proteins that promote cancer growth

09.12.2016 | Life Sciences

Scientists produce a new roadmap for guiding development & conservation in the Amazon

09.12.2016 | Ecology, The Environment and Conservation

Satellites, airport visibility readings shed light on troops' exposure to air pollution

09.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>