Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Crops play a major role in the annual CO2 cycle increase

20.11.2014

Each year, the planet balances its budget. The carbon dioxide absorbed by plants in the spring and summer as they convert solar energy into food is released back to the atmosphere in autumn and winter. Levels of the greenhouse gas fall, only to rise again.

But the budget has gotten bigger. Over the last five decades, the magnitude of this rise and fall has grown nearly 50 percent in the Northern Hemisphere, as the amount of the greenhouse gas taken in and released has increased. Now, new research shows that humans and their crops have a lot to do with it, highlighting the profound impact people have on the Earth's atmosphere.

In a study published Wednesday, Nov. 19, in Nature, scientists at Boston University, the University of New Hampshire, the University of Michigan, the University of Minnesota, the University of Wisconsin-Madison and McGill University show that a steep rise in the productivity of crops grown for food accounts for as much as 25 percent of the increase in this carbon dioxide (CO2) seasonality.

It's not that crops are adding more CO2 to the atmosphere; rather, if crops are like a sponge for CO2, the sponge has simply gotten bigger and can hold and release more of the gas.

With global food productivity expected to double over the next 50 years, the researchers say the findings should be used to improve climate models and better understand the atmospheric CO2 buffering capacity of ecosystems, particularly as climate change may continue to perturb the greenhouse gas budget.

"This is another piece of evidence suggesting that when we (humans) do things at a large scale, we have the ability to greatly influence the composition of the atmosphere," says UW-Madison's Chris Kucharik, a co-author of the study and professor in the College of Agricultural and Life Sciences Department of Agronomy and the Nelson Institute for Environmental Studies.

Since the 1960s in the Northern Hemisphere, maize (corn), wheat, rice and soybeans have seen a 240 percent spike in production, particularly concentrated in the midwestern U.S. and in Northern China, the study found.

But until this point, scientists missed the connection between crops and the CO2 seasonality increase.

"Global climate models don't represent the important details of agroecosystems and their management very well," says Kucharik.

It was fall 2013 when the study's lead authors at Boston University approached the UW-Madison scientist and asked him to lend his agricultural land management, carbon cycling and agricultural technology expertise to their examination of the cycle.

Kucharik helped the team determine how the amount of carbon absorbed by the leaves, stems, roots and food-portion of crops may have changed over time. He helped ensure the methodology the team used properly represented agricultural lands and the management practices that drive changes in the carbon balance.

The study found that, while the area of farmed land has not significantly increased, the production efficiency of that land has. Intensive agricultural management over the last 50 years has had a profound impact.

Kucharik attributes this to improvements in plant breeding, post-World War II fertilization innovations, irrigation and other human-powered technologies.

"You get more bang for your buck, more crop per drop," he says.

Cropland makes up just six percent of the vegetated, or green, area of the Northern Hemisphere and yet, it is a dominant contributor to the 50 percent increase in the CO2 seasonality cycle. This, despite the fact that forests and grasslands have also been more productive as the planet has warmed and growing seasons have lengthened.

"That's a very large, significant contribution, and 2/3 of that contribution is attributed to corn," says Kucharik. "Corn once again is king, this time demonstrating its strong influence on the seasonal cycle of atmospheric CO2."

Earlier work at UW-Madison enabled the research team to make the necessary calculations to incorporate agriculture into the new modeling approach, Kucharik says.

"The person that led the charge was Navin Ramankutty at SAGE (the Nelson Institute Center for Sustainability and the Global Environment), in Jon Foley's group in the late '90s and early 2000s," says Kucharik. "Those first global maps of agricultural land use over time came out of SAGE and the Nelson Institute."

Ramankutty, a co-author of the study, is now a geography professor at the University of British Columbia while Foley, not an author on the study, is now the executive director of the California Academy of Sciences.

CONTACT: Chris Kucharik, 608-890-3021, kucharik@wisc.edu

--Kelly April Tyrrell, ktyrrell2@wisc.edu, 608-262-9772

Chris Kucharik | EurekAlert!
Further information:
http://www.wisc.edu

More articles from Ecology, The Environment and Conservation:

nachricht Global threat to primates concerns us all
19.01.2017 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Reducing household waste with less energy
18.01.2017 | FIZ Karlsruhe – Leibniz-Institut für Informationsinfrastruktur GmbH

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Helmholtz International Fellow Award for Sarah Amalia Teichmann

20.01.2017 | Awards Funding

An innovative high-performance material: biofibers made from green lacewing silk

20.01.2017 | Materials Sciences

Ion treatments for cardiac arrhythmia — Non-invasive alternative to catheter-based surgery

20.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>