Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cropland diversity reduces nitrogen pollution

12.02.2009
Biodiversity in crops decreases fertilizer damage to rivers and lakes
Researchers have identified a link between the diversity of crops grown in farmlands and the pollution they create in lakes and rivers. In a Frontiers in Ecology and the Environment e-View paper, ecologists show that when the biodiversity of crops is high, less dissolved nitrogen is found exiting the surrounding watersheds.

Nitrogen from agricultural fertilizers leaches through soils to groundwater and runs off into rivers and lakes, increasing aquatic dissolved nitrate. Too much nitrate in the water can lead to prolific growth of aquatic algae, which can use up most of a water body's oxygen when they die and are decomposed, creating "dead zones" that cannot support life.

Whitney Broussard of the University of Louisiana at Lafayette and R. Eugene Turner of Louisiana State University at Baton Rouge compiled data from the past 100 years on watersheds varying in size from the Illinois Cache River basin (400 square miles) to the Mississippi River Basin (more than a million square miles). The researchers compared this watershed data with land-use practices since the early 1900s.

The results show that since the beginning of the last century, the average farm size in the United States has doubled and the number of farms has fallen by almost two-thirds. Broussard also says that a shift from farm animals and simple plows to the use of machines to till croplands has changed not only the culture but the environmental impact of farming.

"With the growing American farm comes the necessity to use more industrialized means of farming," says Broussard. "Our agricultural practices have always impacted water quality, but over the past century the mechanization of agriculture and the use of more potent fertilizers has caused a greater effect: the nitrogen leakage rate is higher."

Modern farms tend to produce fewer crop varieties; this lower crop biodiversity can negatively impact surrounding watersheds. According to the study, within a given area, a higher biodiversity of crops led to less dissolved nitrogen in surrounding water bodies. The explanation for this phenomenon, Broussard says, is difficult to discern.

"Diverse farms tend to have smaller fields with more edges, which can mean there's a greater buffering effect on nitrogen runoff by surrounding grasslands or woodlands," he says.

The researchers' results also showed that since 1906, the average aquatic nitrate concentration increased threefold in the entire U.S. and tenfold in the Iowa, Des Moines, and Minnesota Rivers, all of which fall in heavily tilled agricultural areas.

In areas where farming is scarce or absent, however, the authors found no perceptible change in dissolved nitrogen concentrations since the early 1900s. Broussard thinks this indicates that the impacts might be reversible if policy changes included incentives for farmers to rotate more crops, decrease their field size, increase the edges of fields and sizes of buffering zones, and incorporate more native perennial grasses into farms and in between fields.

"There has been great progress made to reduce the footprint of agriculture, but there is still room for improvement," says Broussard. "The American farmer is caught in a mode of production that has tremendous momentum and cannot be changed on the farm – it's a policy question now."

Christine Buckley | EurekAlert!
Further information:
http://www.esa.org

More articles from Ecology, The Environment and Conservation:

nachricht Successful calculation of human and natural influence on cloud formation
04.11.2016 | Goethe-Universität Frankfurt am Main

nachricht Invasive Insects Cost the World Billions Per Year
04.10.2016 | University of Adelaide

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

Simple processing technique could cut cost of organic PV and wearable electronics

06.12.2016 | Materials Sciences

3-D printed kidney phantoms aid nuclear medicine dosing calibration

06.12.2016 | Medical Engineering

Robot on demand: Mobile machining of aircraft components with high precision

06.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>