Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Critical Zone Observatory Seeks to Answer Climate Change Questions

30.09.2009
The University of Delaware, in collaboration with Stroud Water Research Center in Avondale, Pa., has received a $4.3 million grant from the National Science Foundation to establish the Christina River Basin as a new “Critical Zone Observatory” for researching questions relating to climate change.

Scientists define the “critical zone” as the portion of the planet from the treetops to the groundwater that sustains terrestrial life.

The observatory is one of only six in the United States. It is funded through a competitive, five-year grant awarded by the National Science Foundation (NSF) as part of the American Recovery and Reinvestment Act.

Donald Sparks, S. Hallock du Pont Chair in Soil and Environmental Chemistry and director of the new Delaware Environmental Institute at UD, will lead the effort, which involves a multidisciplinary team of scientists.

Sparks's co-principal investigators on the grant include Kyungsoo Yoo, assistant professor of plant and soil sciences, and James Pizzuto, professor of geological sciences, both at UD; and Anthony Aufdenkampe, assistant research scientist, and Louis Kaplan, senior research scientist, both at Stroud Water Research Center.

The research team also includes Shreeram Inamdar, associate professor of bioresources engineering; Delphis Levia, associate professor of geography; Yan Jin, professor of plant and soil sciences; Paul Imhoff, professor of civil and environmental engineering; Holly Michael, assistant professor of geological sciences; and Dominic DiToro, Edward C. Davis Professor of Civil and Environmental Engineering -- all from UD; senior research scientists Denis Newbold and Tom Bott at Stroud Water Research Center; and Rolf Aalto, who is on the faculty at the University of Exeter in the United Kingdom and at the University of Washington.

Using the 565-square-mile Christina River Basin as their laboratory, the scientific team will be working to determine how, and how rapidly, soil erosion and sediment transport through rivers impact the exchange of carbon between the land and the atmosphere, and affect climate.

“Over the centuries, we humans have been a major geological force, re-contouring entire landscapes through our activities,” Sparks notes. “Our new Critical Zone Observatory will work to quantify the impact of these activities on carbon and climate. We're excited to have the opportunity to explore these important scientific questions and look forward to collaborating with our colleagues at Stroud Water Research Center on the effort,” Sparks says.

“The Christina River Basin is already one of the best studied watersheds of its size in the nation, with more than 40 years of research conducted by the Stroud Water Research Center and governmental agencies,” Sparks adds, “but answering the big questions of earth and environmental science requires extensive real-time data and a collaborative effort that the cyber-infrastructure of this Critical Zone Observatory will make available to scientists around the nation.”

Ideal natural laboratory

The Christina River Basin includes five counties and 60 municipalities in Delaware, Pennsylvania, and Maryland, and encompasses Brandywine Creek, White Clay Creek, Red Clay Creek, and the Christina River and their watersheds. It is an ideal natural laboratory to research how humans affect the critical zone, the scientists say, because of its diverse regions ranging from more pristine areas, to second-growth forests, agricultural fields, suburban settings, and highly industrialized and urbanized areas.

“Erosion and excavation activities expose minerals that mix with organic matter in soils and are transported through streams and rivers to the sea,” says Aufdenkampe. “We want to better understand how the interaction of carbon with minerals might sequester that carbon from the atmosphere, where it acts as a greenhouse gas, and also understand how humans have altered that process. To do that effectively, we need to take a whole watershed approach to studying these processes at multiple scales in order to put them all together into a predictive model. That would be a significant contribution,” Aufdenkampe notes.

The Stroud Water Research Center, founded in 1967, seeks to advance knowledge and stewardship of fresh water through research, education, and global outreach to help businesses, landowners, policy makers, and individuals make informed decisions that affect water quality and availability around the world. The independent, not-for-profit organization has conducted pioneering research on rivers and streams on local to international levels, including more than 40 years of studies in the Christina River Basin. Part of White Clay Creek actually flows through the Stroud Water Research Center's laboratories.

The research team will focus on the sources, transport, and fates of water, sediments, and carbon from uplands to inland waters and from inland waters to the coastal zone. These niche regions will provide the students involved in the program -- eight graduate students from UD and more than a dozen undergraduates at Stroud Water Research Center -- with valuable multi-scale field training.

Cutting-edge technologies will be used for real-time gathering of hydrological, physical, and chemical data. Advances in cyber-infrastructure that seamlessly merges real-time data with state-of-the-art graphics will further establish the new Critical Zone Observatory as a community resource for sharing scientific data and public information.

Field installations and data management will enhance an extensive existing network of stations used for monitoring water flow and water chemistry within the Christina River Basin, including Delaware coastal waters, and will build upon a solid foundation of decades of research conducted by UD, Stroud Water Research Center, and numerous state, federal, and non-governmental agencies.

A partnership with NSF's National Center for Airborne Laser Mapping will provide for the collection and processing of extremely detailed and accurate topographic data by Light Detection and Ranging (LIDAR) measurements. Colleagues at the University of California at San Diego, the University of Washington, University of Exeter, and the U.S. Geological Survey also will assist with specific scientific analyses.

Outreach to policy makers, public

Besides serving as a resource to the greater scientific community through open access to data and opportunities for research projects that take advantage of the enhanced monitoring network, the Critical Zone Observatory also will provide outreach to policy makers and the public.

Partners on the outreach effort include several other UD research centers and programs including the new Delaware Environmental Institute, the Delaware Experimental Program to Stimulate Competitive Research (EPSCoR), and the Water Resources Agency in the Institute for Public Administration.

Results also will be shared regularly with the Christina Basin Water Quality Management Committee, which includes representatives from 15 federal, state, and local environmental resource agencies and hosts an annual series of public workshops to identify the science needs of policy makers.

Additionally, the Stroud Water Research Center maintains four full-time staff members to translate research into educational programs for middle and high school students and teachers, and citizen/conservation groups.

The new Critical Zone Observatory at the University of Delaware joins five other such observatories in the United States -- based at Pennsylvania State University, the University of Pennsylvania, University of Arizona, University of Colorado, and University of California Merced.

Tracey Bryant | Newswise Science News
Further information:
http://www.udel.edu

More articles from Ecology, The Environment and Conservation:

nachricht Preservation of floodplains is flood protection
27.09.2017 | Technische Universität München

nachricht Conservationists are sounding the alarm: parrots much more threatened than assumed
15.09.2017 | Justus-Liebig-Universität Gießen

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>