Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Critical Zone Observatory Seeks to Answer Climate Change Questions

30.09.2009
The University of Delaware, in collaboration with Stroud Water Research Center in Avondale, Pa., has received a $4.3 million grant from the National Science Foundation to establish the Christina River Basin as a new “Critical Zone Observatory” for researching questions relating to climate change.

Scientists define the “critical zone” as the portion of the planet from the treetops to the groundwater that sustains terrestrial life.

The observatory is one of only six in the United States. It is funded through a competitive, five-year grant awarded by the National Science Foundation (NSF) as part of the American Recovery and Reinvestment Act.

Donald Sparks, S. Hallock du Pont Chair in Soil and Environmental Chemistry and director of the new Delaware Environmental Institute at UD, will lead the effort, which involves a multidisciplinary team of scientists.

Sparks's co-principal investigators on the grant include Kyungsoo Yoo, assistant professor of plant and soil sciences, and James Pizzuto, professor of geological sciences, both at UD; and Anthony Aufdenkampe, assistant research scientist, and Louis Kaplan, senior research scientist, both at Stroud Water Research Center.

The research team also includes Shreeram Inamdar, associate professor of bioresources engineering; Delphis Levia, associate professor of geography; Yan Jin, professor of plant and soil sciences; Paul Imhoff, professor of civil and environmental engineering; Holly Michael, assistant professor of geological sciences; and Dominic DiToro, Edward C. Davis Professor of Civil and Environmental Engineering -- all from UD; senior research scientists Denis Newbold and Tom Bott at Stroud Water Research Center; and Rolf Aalto, who is on the faculty at the University of Exeter in the United Kingdom and at the University of Washington.

Using the 565-square-mile Christina River Basin as their laboratory, the scientific team will be working to determine how, and how rapidly, soil erosion and sediment transport through rivers impact the exchange of carbon between the land and the atmosphere, and affect climate.

“Over the centuries, we humans have been a major geological force, re-contouring entire landscapes through our activities,” Sparks notes. “Our new Critical Zone Observatory will work to quantify the impact of these activities on carbon and climate. We're excited to have the opportunity to explore these important scientific questions and look forward to collaborating with our colleagues at Stroud Water Research Center on the effort,” Sparks says.

“The Christina River Basin is already one of the best studied watersheds of its size in the nation, with more than 40 years of research conducted by the Stroud Water Research Center and governmental agencies,” Sparks adds, “but answering the big questions of earth and environmental science requires extensive real-time data and a collaborative effort that the cyber-infrastructure of this Critical Zone Observatory will make available to scientists around the nation.”

Ideal natural laboratory

The Christina River Basin includes five counties and 60 municipalities in Delaware, Pennsylvania, and Maryland, and encompasses Brandywine Creek, White Clay Creek, Red Clay Creek, and the Christina River and their watersheds. It is an ideal natural laboratory to research how humans affect the critical zone, the scientists say, because of its diverse regions ranging from more pristine areas, to second-growth forests, agricultural fields, suburban settings, and highly industrialized and urbanized areas.

“Erosion and excavation activities expose minerals that mix with organic matter in soils and are transported through streams and rivers to the sea,” says Aufdenkampe. “We want to better understand how the interaction of carbon with minerals might sequester that carbon from the atmosphere, where it acts as a greenhouse gas, and also understand how humans have altered that process. To do that effectively, we need to take a whole watershed approach to studying these processes at multiple scales in order to put them all together into a predictive model. That would be a significant contribution,” Aufdenkampe notes.

The Stroud Water Research Center, founded in 1967, seeks to advance knowledge and stewardship of fresh water through research, education, and global outreach to help businesses, landowners, policy makers, and individuals make informed decisions that affect water quality and availability around the world. The independent, not-for-profit organization has conducted pioneering research on rivers and streams on local to international levels, including more than 40 years of studies in the Christina River Basin. Part of White Clay Creek actually flows through the Stroud Water Research Center's laboratories.

The research team will focus on the sources, transport, and fates of water, sediments, and carbon from uplands to inland waters and from inland waters to the coastal zone. These niche regions will provide the students involved in the program -- eight graduate students from UD and more than a dozen undergraduates at Stroud Water Research Center -- with valuable multi-scale field training.

Cutting-edge technologies will be used for real-time gathering of hydrological, physical, and chemical data. Advances in cyber-infrastructure that seamlessly merges real-time data with state-of-the-art graphics will further establish the new Critical Zone Observatory as a community resource for sharing scientific data and public information.

Field installations and data management will enhance an extensive existing network of stations used for monitoring water flow and water chemistry within the Christina River Basin, including Delaware coastal waters, and will build upon a solid foundation of decades of research conducted by UD, Stroud Water Research Center, and numerous state, federal, and non-governmental agencies.

A partnership with NSF's National Center for Airborne Laser Mapping will provide for the collection and processing of extremely detailed and accurate topographic data by Light Detection and Ranging (LIDAR) measurements. Colleagues at the University of California at San Diego, the University of Washington, University of Exeter, and the U.S. Geological Survey also will assist with specific scientific analyses.

Outreach to policy makers, public

Besides serving as a resource to the greater scientific community through open access to data and opportunities for research projects that take advantage of the enhanced monitoring network, the Critical Zone Observatory also will provide outreach to policy makers and the public.

Partners on the outreach effort include several other UD research centers and programs including the new Delaware Environmental Institute, the Delaware Experimental Program to Stimulate Competitive Research (EPSCoR), and the Water Resources Agency in the Institute for Public Administration.

Results also will be shared regularly with the Christina Basin Water Quality Management Committee, which includes representatives from 15 federal, state, and local environmental resource agencies and hosts an annual series of public workshops to identify the science needs of policy makers.

Additionally, the Stroud Water Research Center maintains four full-time staff members to translate research into educational programs for middle and high school students and teachers, and citizen/conservation groups.

The new Critical Zone Observatory at the University of Delaware joins five other such observatories in the United States -- based at Pennsylvania State University, the University of Pennsylvania, University of Arizona, University of Colorado, and University of California Merced.

Tracey Bryant | Newswise Science News
Further information:
http://www.udel.edu

More articles from Ecology, The Environment and Conservation:

nachricht Upcycling 'fast fashion' to reduce waste and pollution
03.04.2017 | American Chemical Society

nachricht Litter is present throughout the world’s oceans: 1,220 species affected
27.03.2017 | Alfred-Wegener-Institut, Helmholtz-Zentrum für Polar- und Meeresforschung

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Fighting drug resistant tuberculosis – InfectoGnostics meets MYCO-NET² partners in Peru

28.04.2017 | Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

 
Latest News

Wireless power can drive tiny electronic devices in the GI tract

28.04.2017 | Medical Engineering

Ice cave in Transylvania yields window into region's past

28.04.2017 | Earth Sciences

Nose2Brain – Better Therapy for Multiple Sclerosis

28.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>