Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cracking the case of recycled gadgets

23.10.2008
Recycling devices built with plastic cases and other components, such as mobile phones, mp3 players, and personal digital assistants, is difficult and requires repetitive manual labour.

However, a new approach to creating the fastenings and tabs for such devices based on the shape-memory effect in plastics could mean that disassembling such devices at end of life could be automated.

The approach would allow valuable components and metals to be recovered more efficiently from the millions of devices discarded every year, according to research to be published in the International Journal of Product Development.

Habib Hussein and David Harrison of the School of Engineering and Design at Brunel University, UK, explain that Europe's WEEE regulations, the Waste Electrical and Electronic Equipment directive, are aimed at tackling the growing stream of waste electrical and electronic goods in order to reduce landfill usage and waste that is incinerated. The regulations mean that there are now incentives to design equipment that is more recyclable.

"Product disassembly offers one method for reducing the landfill and enabling compliance with legislative targets by optimising the recovery of hazardous and valuable components during the recycling process. However, manual disassembly is a time-consuming and thus costly process, in terms of either financial or social impact," the researchers say.

They have now investigated the possibility of Active Disassembly using Smart Materials (ADSM). ADSM uses materials that can act as fasteners within a product, which at product end of life, can be undone simply by direct heating. This releases the fasteners causing the device case to fall apart without screws having to be undone or stiff clasps opened manually. This is one important design feature that might make recycling electronic devices with plastic cases much easier.

Their concept relies on the so-called shape memory effect in engineering plastics, or polymers. Plastics can be fabricated in one shape - the unfastened state - and then moulded a second time into a new shape - the fastened state. When the fastened state version is heated, the plastic will revert to its original, unfastened state, as it retains a molecular memory of the form in which it was originally produced.

The researchers have developed a case-fastening device based on one such shape memory polymer. Their tests demonstrated that lowering the device at end of life into hot water, leads to the fasteners reverting to their unfastened state and the case falling apart, on agitation. They have also shown that the fasteners retain their integrity for at least two years without disassembling spontaneously.

"Standard-engineering polymers may be used to produce reliable long-term shape memory effect fastening devices to enable the efficient end of life treatment of WEEE," the researchers conclude.

Albert Ang | alfa
Further information:
http://www.inderscience.com/search/index.php?action=record&rec_id=20403

More articles from Ecology, The Environment and Conservation:

nachricht When corals eat plastics
24.05.2018 | Justus-Liebig-Universität Gießen

nachricht Dispersal of Fish Eggs by Water Birds – Just a Myth?
19.02.2018 | Universität Basel

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Molecular switch will facilitate the development of pioneering electro-optical devices

A research team led by physicists at the Technical University of Munich (TUM) has developed molecular nanoswitches that can be toggled between two structurally different states using an applied voltage. They can serve as the basis for a pioneering class of devices that could replace silicon-based components with organic molecules.

The development of new electronic technologies drives the incessant reduction of functional component sizes. In the context of an international collaborative...

Im Focus: LZH showcases laser material processing of tomorrow at the LASYS 2018

At the LASYS 2018, from June 5th to 7th, the Laser Zentrum Hannover e.V. (LZH) will be showcasing processes for the laser material processing of tomorrow in hall 4 at stand 4E75. With blown bomb shells the LZH will present first results of a research project on civil security.

At this year's LASYS, the LZH will exhibit light-based processes such as cutting, welding, ablation and structuring as well as additive manufacturing for...

Im Focus: Self-illuminating pixels for a new display generation

There are videos on the internet that can make one marvel at technology. For example, a smartphone is casually bent around the arm or a thin-film display is rolled in all directions and with almost every diameter. From the user's point of view, this looks fantastic. From a professional point of view, however, the question arises: Is that already possible?

At Display Week 2018, scientists from the Fraunhofer Institute for Applied Polymer Research IAP will be demonstrating today’s technological possibilities and...

Im Focus: Explanation for puzzling quantum oscillations has been found

So-called quantum many-body scars allow quantum systems to stay out of equilibrium much longer, explaining experiment | Study published in Nature Physics

Recently, researchers from Harvard and MIT succeeded in trapping a record 53 atoms and individually controlling their quantum state, realizing what is called a...

Im Focus: Dozens of binaries from Milky Way's globular clusters could be detectable by LISA

Next-generation gravitational wave detector in space will complement LIGO on Earth

The historic first detection of gravitational waves from colliding black holes far outside our galaxy opened a new window to understanding the universe. A...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Save the date: Forum European Neuroscience – 07-11 July 2018 in Berlin, Germany

02.05.2018 | Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

 
Latest News

When corals eat plastics

24.05.2018 | Ecology, The Environment and Conservation

Surgery involving ultrasound energy found to treat high blood pressure

24.05.2018 | Medical Engineering

First chip-scale broadband optical system that can sense molecules in the mid-IR

24.05.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>