Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Cracking the case of recycled gadgets

23.10.2008
Recycling devices built with plastic cases and other components, such as mobile phones, mp3 players, and personal digital assistants, is difficult and requires repetitive manual labour.

However, a new approach to creating the fastenings and tabs for such devices based on the shape-memory effect in plastics could mean that disassembling such devices at end of life could be automated.

The approach would allow valuable components and metals to be recovered more efficiently from the millions of devices discarded every year, according to research to be published in the International Journal of Product Development.

Habib Hussein and David Harrison of the School of Engineering and Design at Brunel University, UK, explain that Europe's WEEE regulations, the Waste Electrical and Electronic Equipment directive, are aimed at tackling the growing stream of waste electrical and electronic goods in order to reduce landfill usage and waste that is incinerated. The regulations mean that there are now incentives to design equipment that is more recyclable.

"Product disassembly offers one method for reducing the landfill and enabling compliance with legislative targets by optimising the recovery of hazardous and valuable components during the recycling process. However, manual disassembly is a time-consuming and thus costly process, in terms of either financial or social impact," the researchers say.

They have now investigated the possibility of Active Disassembly using Smart Materials (ADSM). ADSM uses materials that can act as fasteners within a product, which at product end of life, can be undone simply by direct heating. This releases the fasteners causing the device case to fall apart without screws having to be undone or stiff clasps opened manually. This is one important design feature that might make recycling electronic devices with plastic cases much easier.

Their concept relies on the so-called shape memory effect in engineering plastics, or polymers. Plastics can be fabricated in one shape - the unfastened state - and then moulded a second time into a new shape - the fastened state. When the fastened state version is heated, the plastic will revert to its original, unfastened state, as it retains a molecular memory of the form in which it was originally produced.

The researchers have developed a case-fastening device based on one such shape memory polymer. Their tests demonstrated that lowering the device at end of life into hot water, leads to the fasteners reverting to their unfastened state and the case falling apart, on agitation. They have also shown that the fasteners retain their integrity for at least two years without disassembling spontaneously.

"Standard-engineering polymers may be used to produce reliable long-term shape memory effect fastening devices to enable the efficient end of life treatment of WEEE," the researchers conclude.

Albert Ang | alfa
Further information:
http://www.inderscience.com/search/index.php?action=record&rec_id=20403

More articles from Ecology, The Environment and Conservation:

nachricht Listening in: Acoustic monitoring devices detect illegal hunting and logging
14.12.2017 | Gesellschaft für Ökologie e.V.

nachricht How fires are changing the tundra’s face
12.12.2017 | Gesellschaft für Ökologie e.V.

All articles from Ecology, The Environment and Conservation >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Engineers program tiny robots to move, think like insects

15.12.2017 | Power and Electrical Engineering

One in 5 materials chemistry papers may be wrong, study suggests

15.12.2017 | Materials Sciences

New antbird species discovered in Peru by LSU ornithologists

15.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>